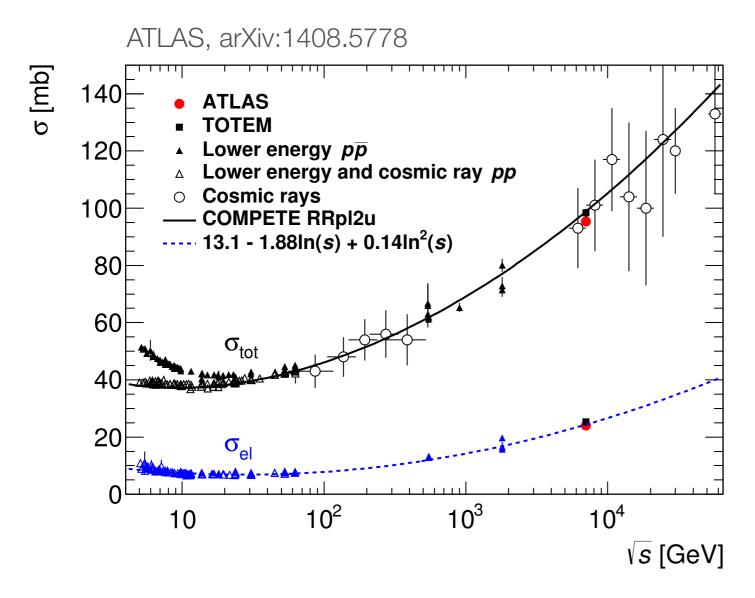
Quark-Gluon Plasma Physics

4. Basics of Nucleon-Nucleon and Nucleus-Nucleus Collisions

Prof. Dr. Klaus Reygers
Prof. Dr. Johanna Stachel
Heidelberg University
SS 2019

Total p+p(pbar) Cross Section



parameterization from Regge theory:

$$\sigma_{\mathsf{tot}} = X s^{\epsilon} + Y s^{\epsilon'}$$

$$\epsilon = 0.08 - 0.1$$
, $\epsilon' \approx -0.45$

Above $\sim \sqrt{s} = 20$ GeV all hadronic cross sections rise with increasing \sqrt{s}

Data show that

$$\sigma_{\text{tot}}(h+X) = \sigma_{\text{tot}}(\bar{h}+X)$$

(in line with Pomeranchuk's theorem)

Soft processes: hard to calculate $\sigma_{tot}(\sqrt{s})$ in QCD

Modeling based on Regge theory: exchange of color-neutral object called *pomeron*

Diffractive collisions (I)

(Single) diffraction in p+p:

"Projectile" proton is excited to a hadronic state X with mass M

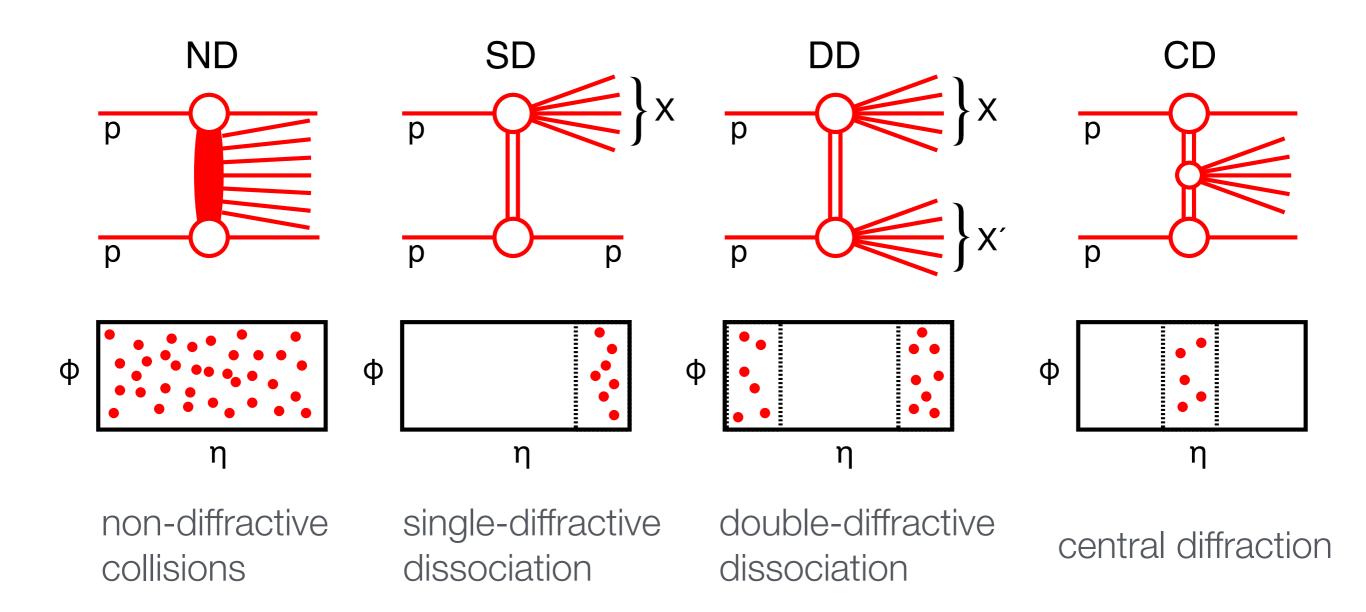
$$p_{\mathsf{proj}} + p_{\mathsf{targ}} o X + p_{\mathsf{targ}}$$

The excited state X fragments, giving rise to the production of (a small number) of particles in the forward direction

Theoretical view:

- Diffractive events correspond to the exchange of a Pomeron
- The Pomeron carries the quantum numbers of the vacuum (JPC = 0++)
- Thus, there is no exchange of quantum numbers like color or charge
- In a QCD picture the Pomeron can be considered as a two- or multi-gluon state, see, e.g., O. Nachtmann (→ <u>link</u>)

Diffractive collisions (II)



$$\sigma_{\text{tot}} = \sigma_{\text{el}} + \sigma_{\text{inel}}, \quad \sigma_{\text{inel}} = \sigma_{\text{SD}} + \sigma_{\text{DD}} + \sigma_{\text{CD}} + \sigma_{\text{ND}}$$

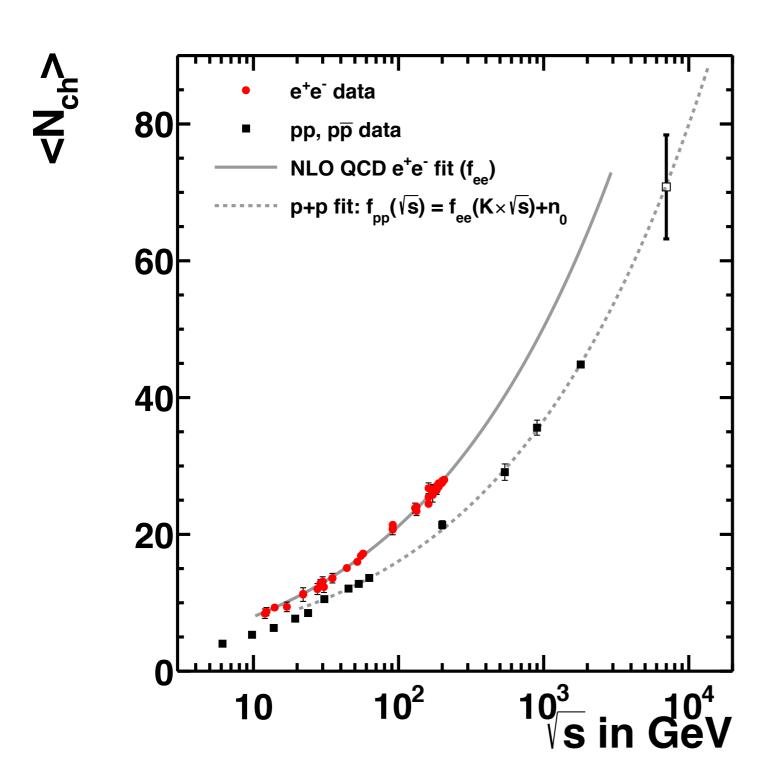
Diffractive collisions (III)

UA5, Z. Phys. C33, 175, 1986

$p + \overline{p}$	√s = 200 GeV	√s = 900 GeV
Total inelastic	(41.8 ± 0.6) mb	(50.3 ± 0.4 ± 1.0) mb
Single-diffractive	(4.8 ± 0.5 ± 0.8) mb	(7.8 ± 0.5 ± 1.8) mb
Double-diffractive	(3.5 ± 2.2) mb	(4.0 ± 2.5) mb
Non-diffractive	≈ 33.5 mb	≈ 38.5 mb

Fraction of diffractive dissociation events with respect to all inelastic collisions is about 20–30% (rather independent of √s)
See also ATLAS, arXiv:1201.2808

Charged-particle Multiplicity as a fct. of √s: Similarities between pp and e+e-



The increase of N_{ch} with √s looks rather similar in p+p and e+e-

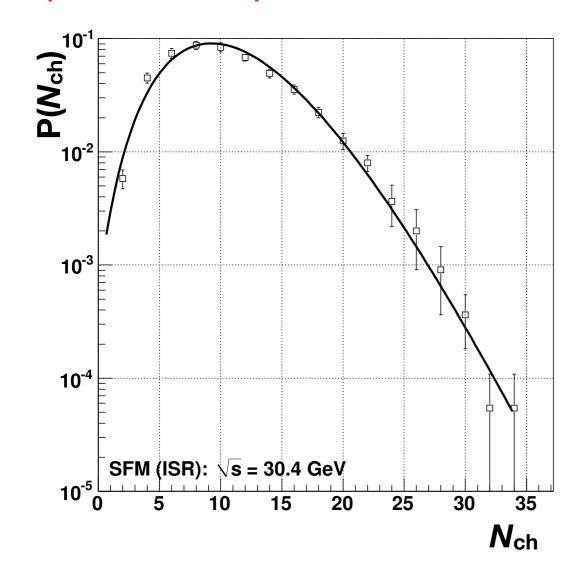
Roughly speaking, the energy available for particle production in p+p seems to be ~ 30–50%:

$$f(\sqrt{s}) := N_{ch}^{e+e-}(\sqrt{s})$$

$$\rightarrow N_{ch}^{p+p} = f(K\sqrt{s_{pp}}) + n_0$$

A fit yields: $K \approx 0.35$, $n_0 \approx 2.2$

What is the distribution of the number of produced particles per collision?



Independent sources: Poisson distribution

Observation:

Multiplicity distributions in pp, e+e-, and lepton-hadron collisions well described by a Negative Binomial Distribution (NBD)

Deviations from the NBD were discovered by UA5 at $\sqrt{s} = 900$ GeV and later confirmed at the Tevatron at $\sqrt{s} = 1800$ GeV (shoulder structure at $n \approx 2 < n >$)

$$P_{\mu,k}^{\mathsf{NBD}}(n) = \frac{(n+k-1)\cdot(n+k-2)\cdot...\cdot k}{\Gamma(n+1)} \left(\frac{\mu/k}{1+\mu/k}\right)^n \frac{1}{(1+\mu/k)^k}$$

$$\langle n \rangle = \mu$$
, $D := \sqrt{\langle n^2 \rangle - \langle n \rangle^2} = \sqrt{\mu \left(1 + \frac{\mu}{k}\right)}$

Limits of the NBD:

 $k \rightarrow \infty$: Poisson distribution integer k, k < 0: Binomial distribution $(N = -k, p = -\langle n \rangle/k)$

π⁰ transverse momentum distributions at different √s

Low p_T (< ~2 GeV/c):

"soft processes"

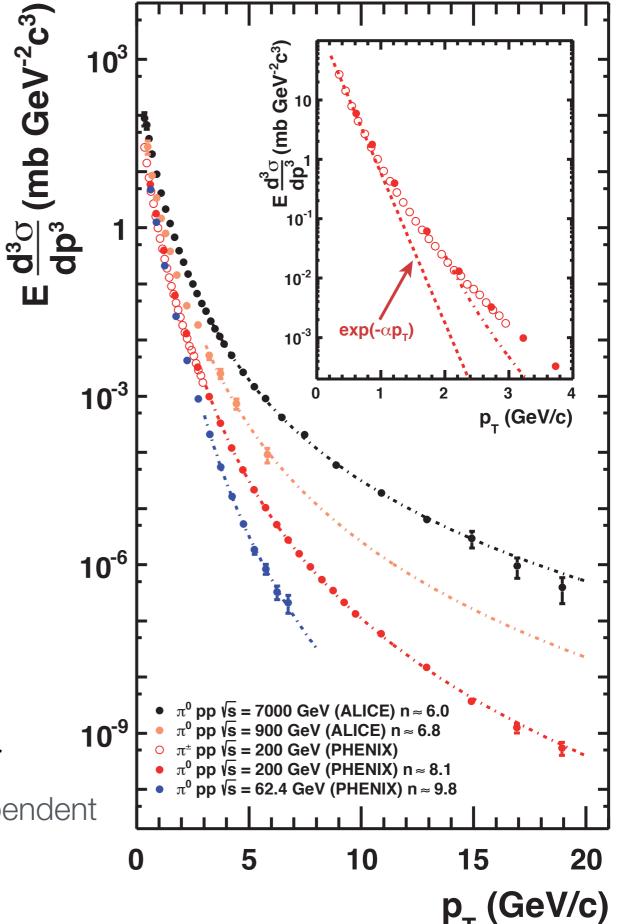
$$E \frac{d^3 \sigma}{d^3 p} = A(\sqrt{s}) \cdot e^{-\alpha p_T}, \ \alpha \approx 6/(\text{GeV}/c)$$

High p_T ("hard scattering"):

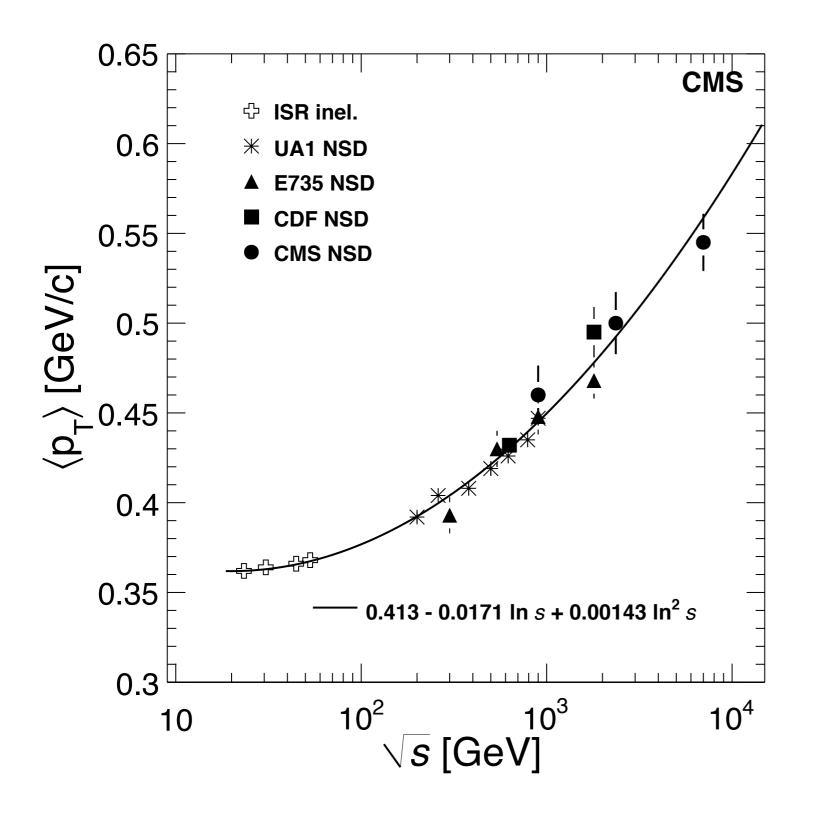
$$E\frac{\mathsf{d}^3\sigma}{\mathsf{d}^3p} = B(\sqrt{s}) \cdot \frac{1}{p_{\mathsf{T}}^{n(\sqrt{s})}}$$

Average *p*_T:

$$\langle p_{\mathsf{T}} \rangle = \frac{\int\limits_{0}^{\infty} p_{\mathsf{T}} \frac{\mathrm{d}N_{\mathsf{x}}}{\mathrm{d}p_{\mathsf{T}}} \mathrm{d}p_{\mathsf{T}}}{\int\limits_{0}^{\infty} \frac{\mathrm{d}N_{\mathsf{x}}}{\mathrm{d}p_{\mathsf{T}}} \mathrm{d}p_{\mathsf{T}}} \approx 300 - 400 \mathrm{MeV}/c$$
pretty energy-independent for $\sqrt{s} < 100 \ \mathrm{GeV}$



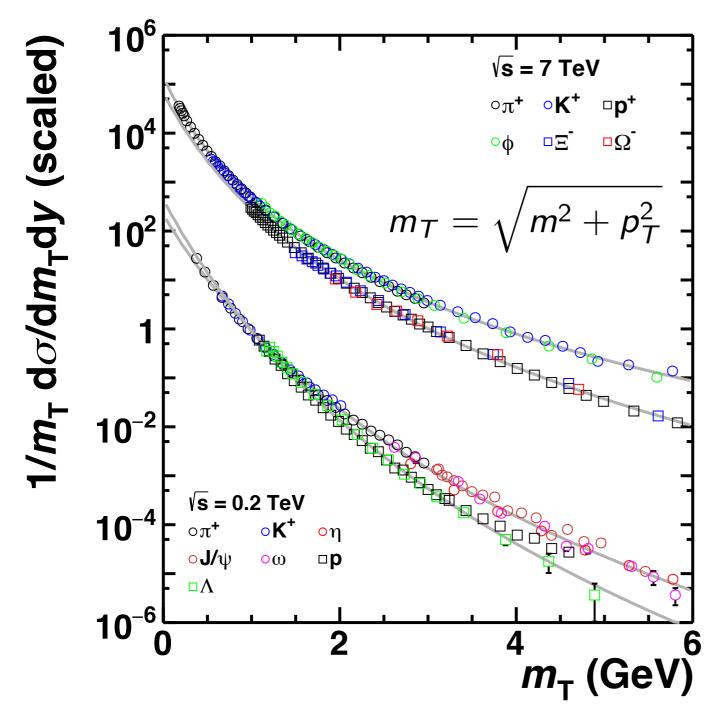
Mean p_T increases with \sqrt{s}



Increase of $\langle p_T \rangle$ with \sqrt{s} (most likely) reflects increase in particle production from hard parton-parton scattering

CMS, PRL 105, 022002 (2010) CDF, PRL 61, 1819 (1988)

m_T scaling in pp collisions



*m*_T scaling (early ref's): Nucl. Phys. B70, 189–204 (1974) Nucl. Phys. B120 (1977) 14-22 m_T scaling: shape of m_T spectra the same for different hadron species

example:
$$\frac{dN/dm_T|_{\eta}}{dN/dm_T|_{\pi^0}} \approx 0.45$$

possible interpretation: thermodynamic models

$$E\frac{\mathsf{d}^3 n}{\mathsf{d}^3 p} \propto Ee^{-E/T}$$

$$\to \frac{1}{m_T} \frac{\mathsf{d} n}{\mathsf{d} m_T} \propto K_1 \left(\frac{m_T}{T}\right)$$

RHIC/LHC:

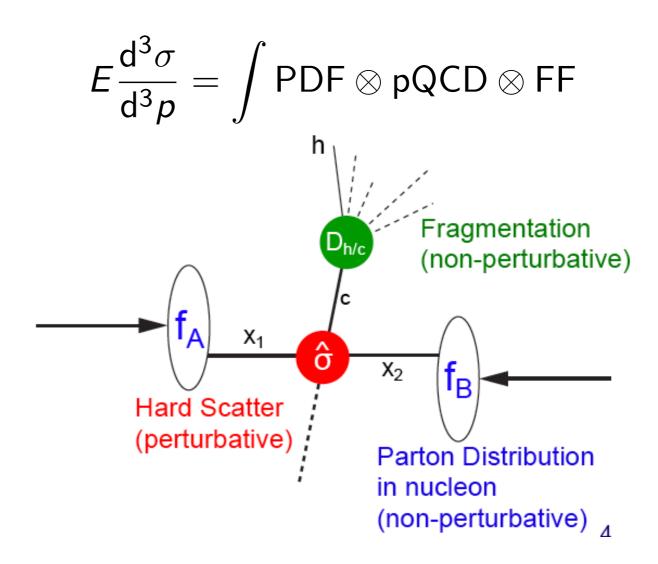
 m_T scaling (approximately) satisfied, different universal function for mesons and baryons

Do deviations from m_T scaling in pp at low p_T indicate onset of radial flow? (1312.4230)

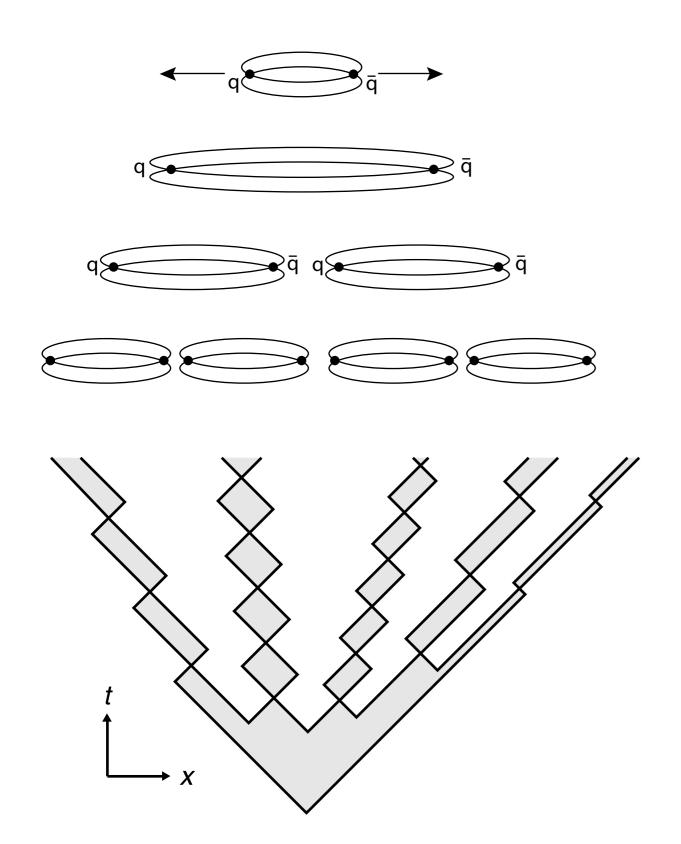
Theoretical modeling: General considerations

- Description of particle production amenable to perturbative methods only at sufficiently large p_T (so that α_s becomes sufficiently small)
 - parton distributions (PDF)
 - parton-parton cross section from perturbative QCD (pQCD)
 - fragmentation functions (FF)

- Low-p_T:
 Need to work with (QCD inspired)
 models, and confront them with data
 - e.g. Lund string model



Modeling particle production as string breaking (I)



- Color flux tube between two quarks breaks due to quark-antiquark pair production in the intense color field
- Lund model: The basic assumption of the symmetric Lund model is that the vertices at which the quark and the antiquark are produced lie approximately on a curve on constant proper time
- Result: flat rapidity distribution of the produced particles

Modeling particle production as string breaking (II)

$$q \qquad \overline{q'} \qquad q' \qquad \overline{q} \qquad q \qquad \overline{q'} \qquad q' \qquad \overline{q}$$

$$m_{\perp q'} = 0 \qquad \qquad d = m_{\perp q'} / \kappa$$

$$m_{\perp q'} > 0$$

In terms of the transverse mass of the produced quark ($m_{T,q'} = m_{T,q'bar}$) the probability that the break-up occurs is:

$$P \propto \exp\left(-\frac{\pi m_{\perp q'}^2}{k}\right) = \exp\left(-\frac{\pi p_{\perp q'}^2}{k}\right) \exp\left(-\frac{\pi m_{q'}^2}{k}\right)$$

This leads to a transverse momentum distribution for the quarks of the form:

$$\frac{1}{p_T} \frac{dN_{\text{quark}}}{dp_T} = \text{const.} \cdot \exp\left(-\pi p_T^2/k\right) \quad \rightsquigarrow \quad \sqrt{\langle p_T^2 \rangle_{\text{quark}}} = \sqrt{k/\pi}$$

For pions (two quarks) one obtains: $\sqrt{\langle p_T^2 \rangle_{\rm pion}} = \sqrt{2k/\pi}$

With a string tension of 1 GeV/fm this yields $\langle p_T \rangle_{pion} \approx 0.37$ GeV/c, in approximate agreement with data

Modeling particle production as string breaking (III)

Convolution of the string breaking mechanism with fluctuations of the string tension described by a Gaussian give rise to exponential p_T spectra

Phys. Lett. B466, 301-304 (1999)

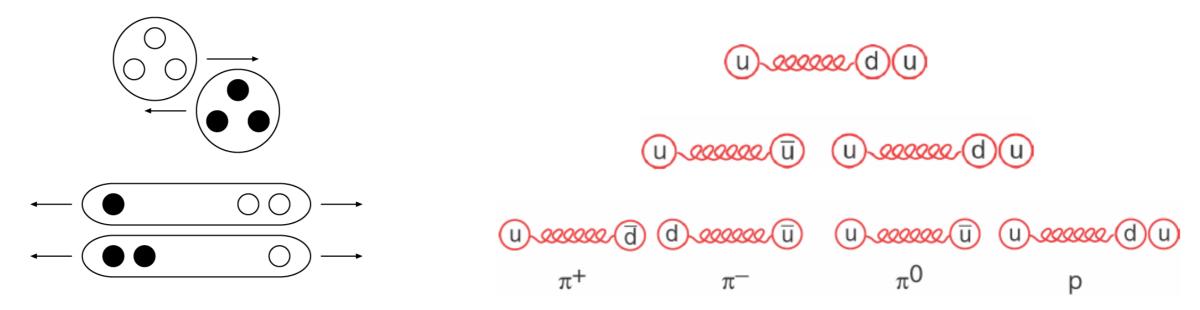
The tunneling process implies heavy-quark suppression:

$$u\bar{u}:d\bar{d}:s\bar{s}:c\bar{c}\approx 1:1:0.3:10^{-11}$$

The production of baryons can be modeled by replacing the q-qbar pair by an quark-diquark pair

quark-diquark string

Collisions of hadrons described as excitation of quark-diquarks strings:

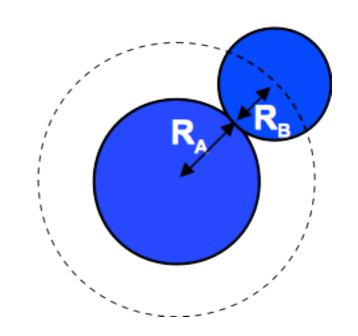


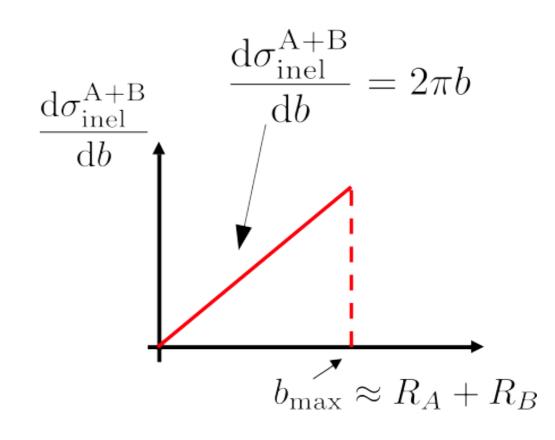
Ultra-Relativistic Nucleus-Nucleus Collisions: Importance of Nuclear Geometry

- Ultra-relativistic energies
 - De Broglie wave length much smaller than size of the nucleon
 - Wave character of the nucleon can be neglected for the estimation of the total cross section
- Nucleus-Nucleus collision can be considered as a collision of two black disks

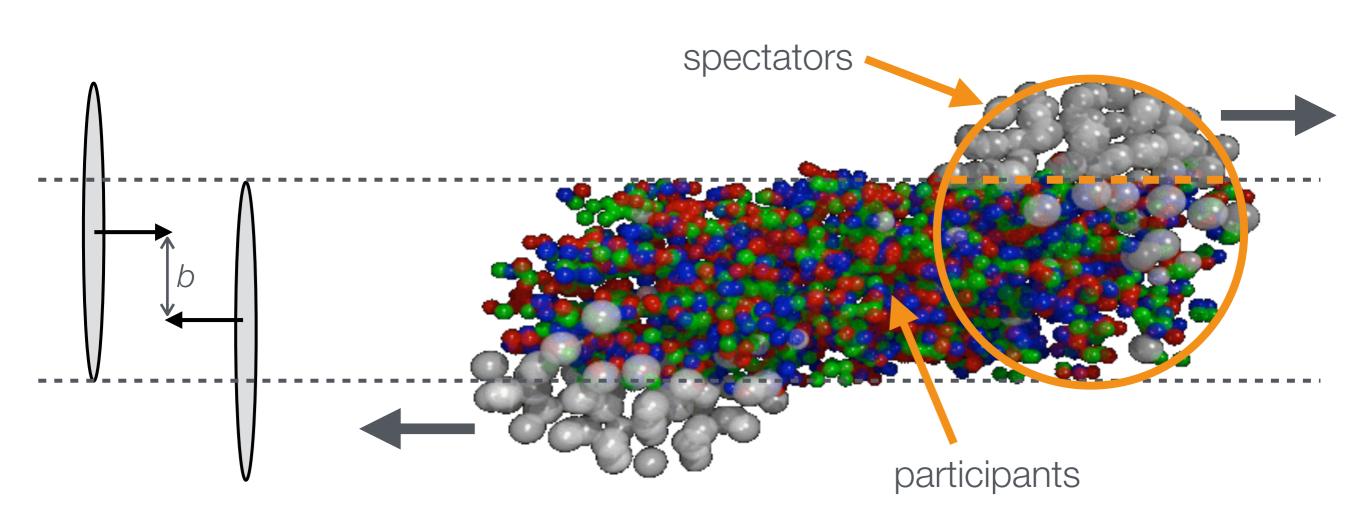
$$R_A \approx r_0 \cdot A^{1/3}, \ r_0 = 1.2 \, \text{fm}$$

$$\sigma_{\rm inel}^{\rm A+B} pprox \sigma_{\rm geo} pprox \pi r_0^2 (A^{1/3} + B^{1/3})^2$$



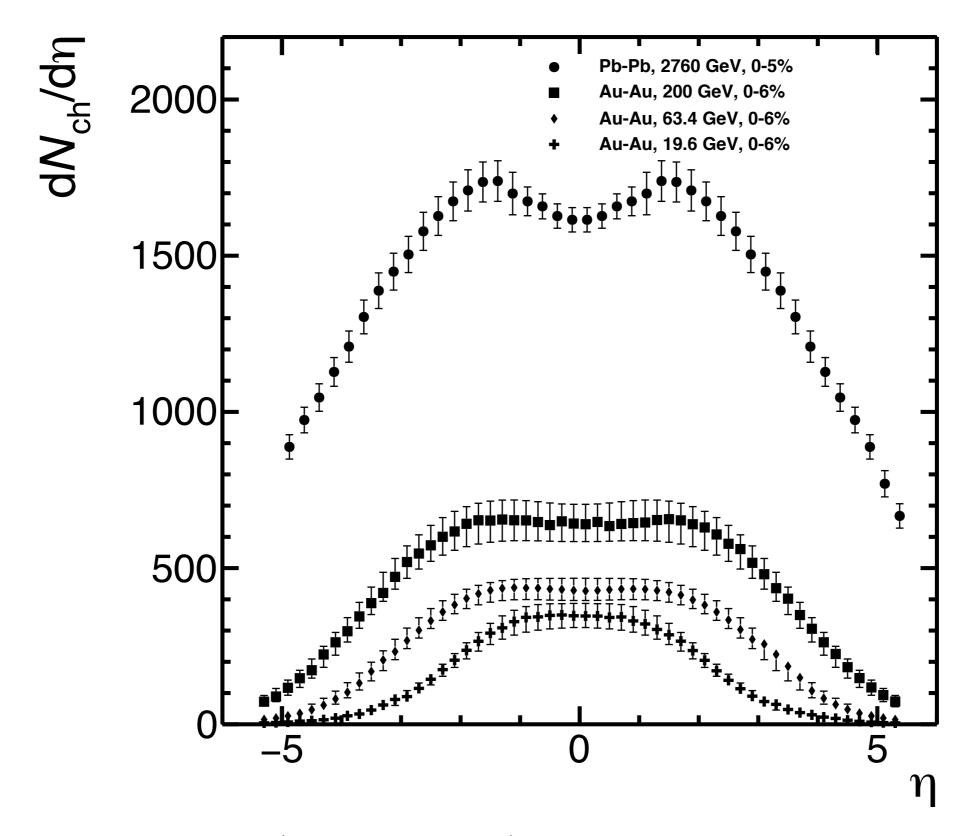


Participants and spectators

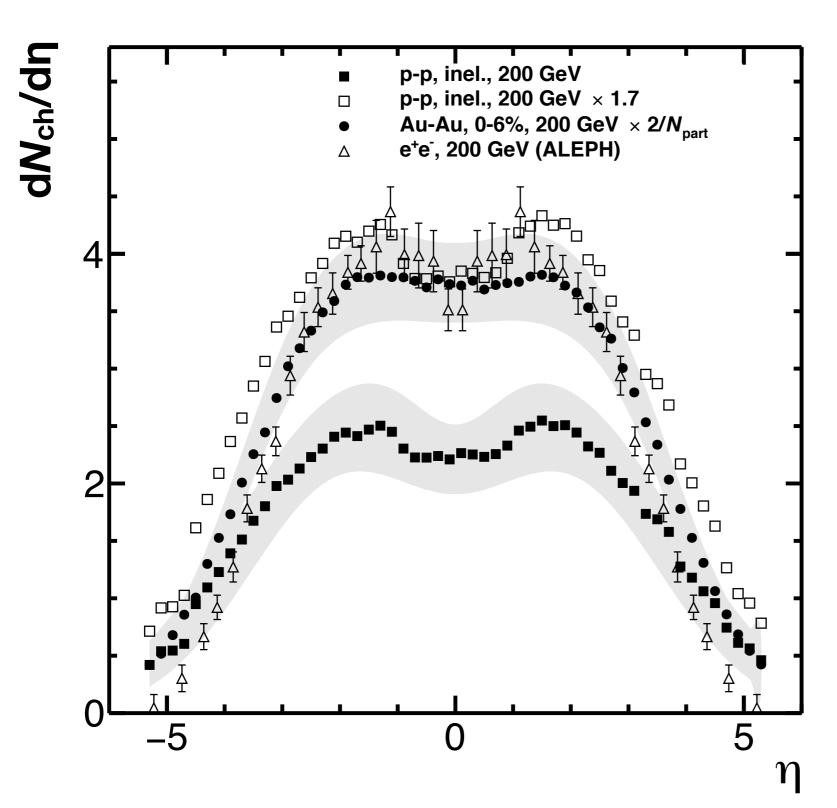


- N_{coll}: number of inelastic nucleon-nucleon collisions
- N_{part}: number of nucleons which underwent at least one inelastic nucleonnucleon collisions

Charged particle pseudorapidity distributions for different $\sqrt{s_{NN}}$

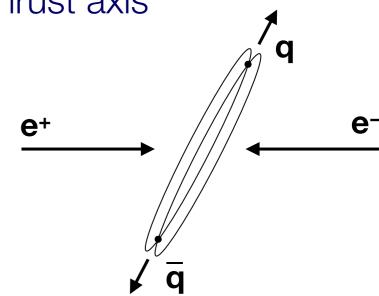


Charged-particle Pseudorapidity Distributions: Comparison e+e-, pp, and AA



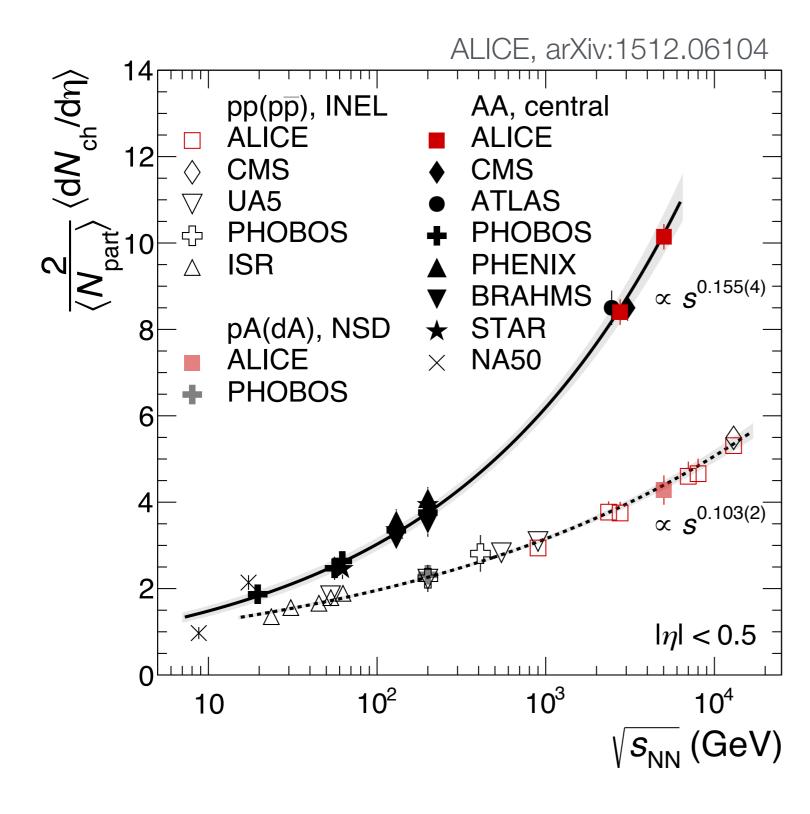
Multiplicity per participant higher in AA than in pp

e+e-:
pseudorapidity along the thrust axis



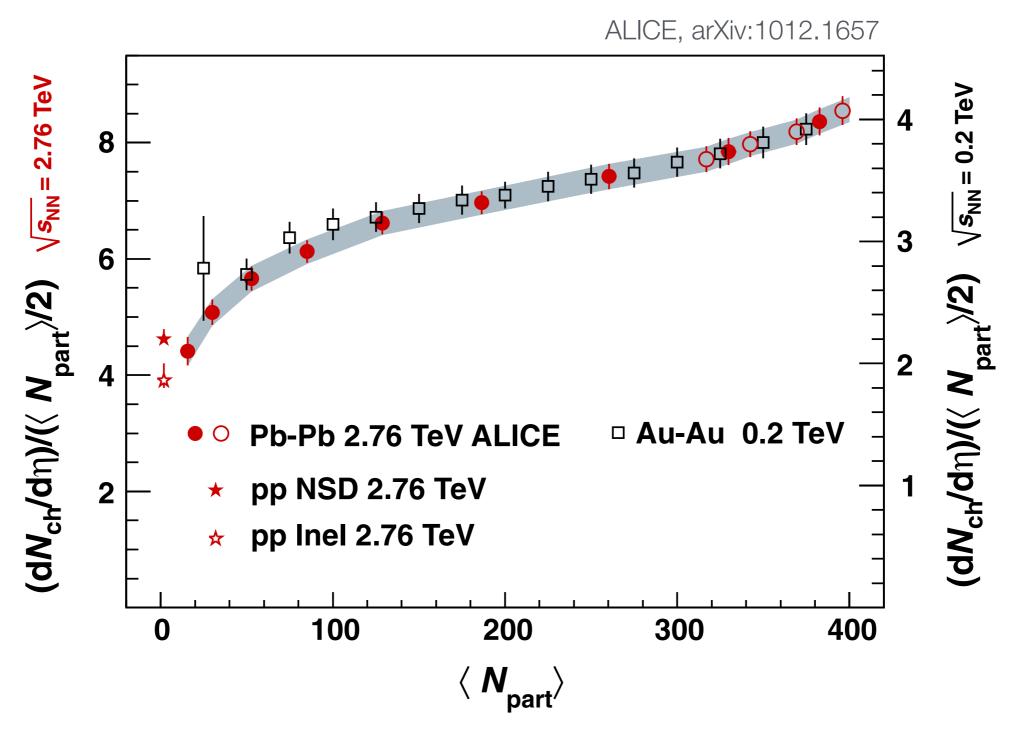
AA and e+e- η distributions strikingly similar

dN_{ch}/dη vs √s_{NN} in pp and central A-A collisions



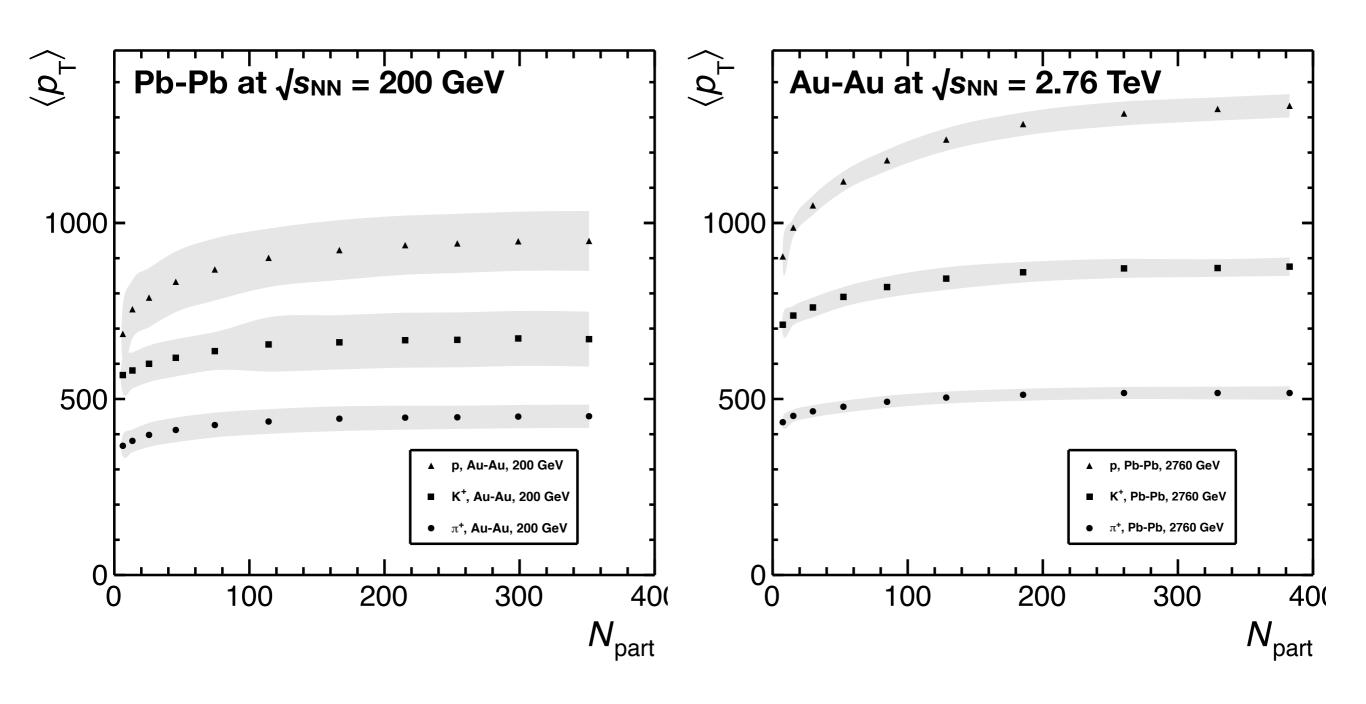
- dN_{ch}/dη scales with s^α
- Increase in central A+A stronger than in p+p

Centrality dependence of dN_{ch}/dη



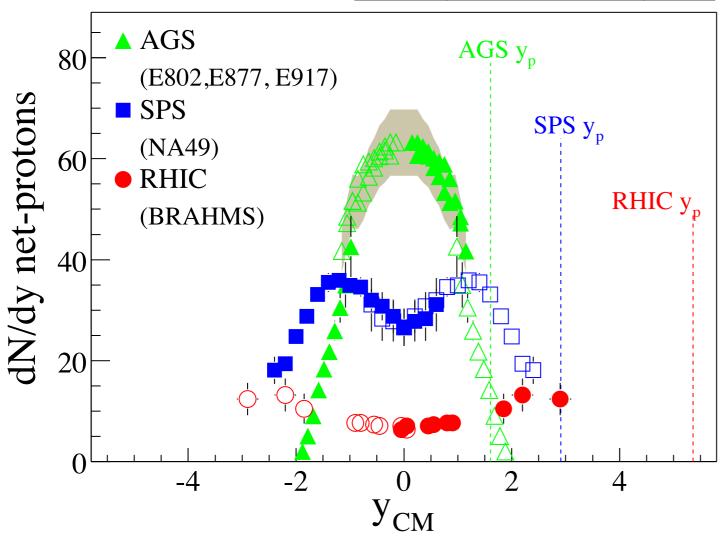
- $dN_{ch}/d\eta / N_{part}$ increases with centrality
- Relative increase similar at RHIC and the LHC: Importance of geometry!

Average p_T of pions, kaons, and protons in Au-Au@200 GeV and Pb-Pb@2.76 TeV



Nuclear stopping power (Au-Au at √s_{NN} = 200 GeV)

Brahms, PRL 93:102301, 2004



Average rapidity loss:

Initial rapidity:

$$y_{\rm p} = 5.36$$

Net baryons after the collision:

$$\langle y \rangle = \frac{2}{N_{\text{part}}} \int_0^{y_p} y \frac{dN_{B-\bar{B}}}{dy} dy$$

Average rapidity loss:

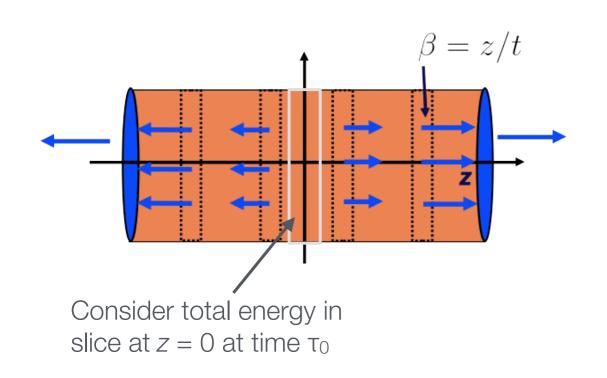
$$\langle \delta y \rangle = y_p - \langle y \rangle \approx 2$$

Average energy per (net) baryon:

$$E_{\rm p} = 100\,{
m GeV}, \qquad \langle E \rangle = rac{1}{N_{
m part}} \int\limits_{-y_{
m p}}^{y_{
m p}} \underbrace{\langle m_T \rangle \cosh y}_{F} rac{{
m d}N_{B-ar{B}}}{{
m d}y} \,{
m d}y pprox 27 \pm 6\,{
m GeV}$$

Average energy loss of a nucleon in central Au+Au@200GeV is 73 ± 6 GeV

Bjorken's formula for the initial energy density



Assumptions: 2dz

- Particles (quarks and gluons)
 materialize at proper time τ₀
- Position z and longitudinal velocity (i.e. rapidity) are correlated
 - As if particles streamed freely from the origin

$$z = \tau \sinh y$$

$$\varepsilon = \frac{E}{V} = \frac{1}{A} \frac{dE}{dz} \Big|_{z=0} = \frac{1}{A} \frac{dE}{dy} \Big|_{y=0} \frac{dy}{dz} \Big|_{z=0} = \frac{1}{A} \frac{dE}{dy} \Big|_{y=0} \frac{1}{\tau} = \frac{\langle m_T \rangle}{A \cdot \tau} \frac{dN}{dy} \Big|_{y=0}$$

A = transverse area

$$arepsilon = rac{1}{A \cdot au_0} \left. rac{\mathsf{d} E_\mathsf{T}}{\mathsf{d} y}
ight|_{v=0}$$
 , $au_0 pprox 1 \, \mathrm{fm}/c$

However, this formula neglects longitudinal work:

- ▶ dE/dy drops as a fct. of time
- Bjorken formula underestimates ε

Energy density in central Pb-Pb collisions at the LHC

$$\varepsilon = \frac{1}{A \cdot \tau_0} \frac{dE_T}{dy} \bigg|_{y=0}$$

$$= \frac{1}{A \cdot \tau_0} J(y, \eta) \frac{dE_T}{d\eta} \bigg|_{\eta=0}$$
with $J(y, \eta) \approx 1.09$

Transverse area:

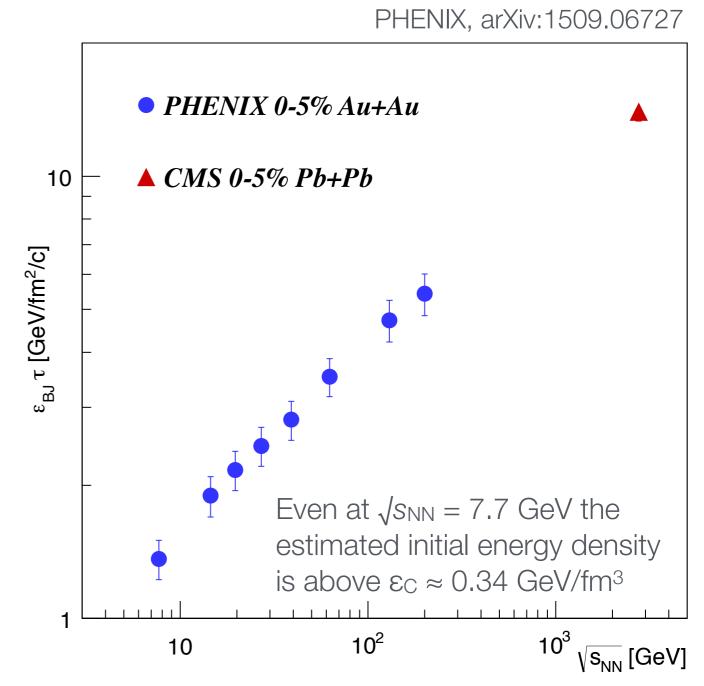
$$A = \pi R_{\rm Pb}^2$$
 with $R_{\rm Pb} \approx 7 \, {\rm fm}$

Central Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV:

$$dE_T/d\eta = 2000 \, \text{GeV}$$

Energy density:

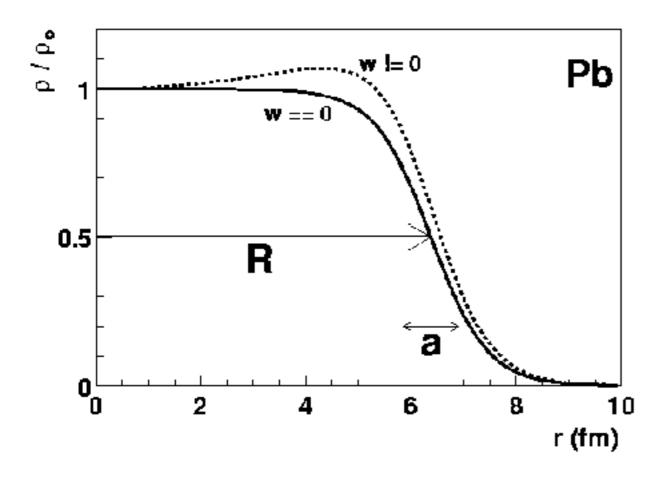
$$arepsilon_{\mathsf{LHC}} = 14\,\mathsf{GeV/fm^3}$$
 $pprox 2.6 imes arepsilon_{\mathsf{RHIC}} ext{ for } au_0 = 1\,\mathsf{fm/}c$



Glauber modeling: An interface between theory and experiment

Starting point: nucleon density

$$\rho(r) = \frac{\rho_0 (1 + wr^2/R^2)}{1 + \exp((r - R)/a)}$$



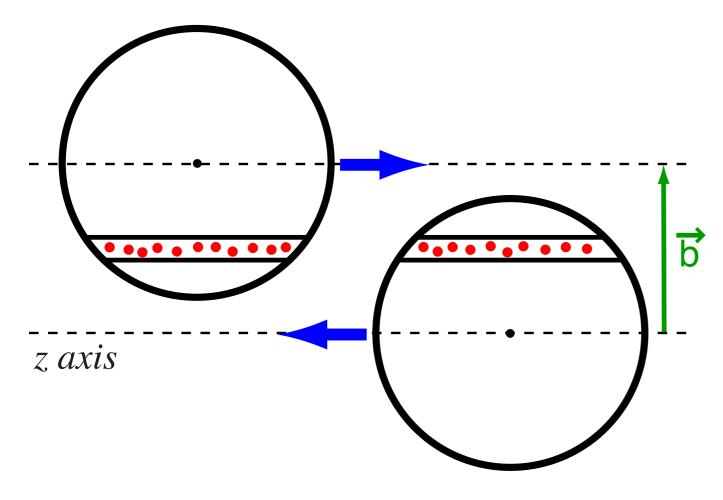
Nucleus	Α	R(fm)	a (fm)	W
С	12	2.47	0	0
0	16	2.608	0.513	-0.051
Al	27	3.07	0.519	0
S	32	3.458	0.61	0
Ca	40	3.76	0.586	-0.161
Ni	58	4.309	0.516	-0.1308
Cu	63	4.2	0.596	0
W	186	6.51	0.535	0
Au	197	6.38	0.535	0
Pb	208	6.68	0.546	0
U	238	6.68	0.6	0

Woods-Saxon parameters typically from e-nucleus scattering (sensitive to charge distribution only)

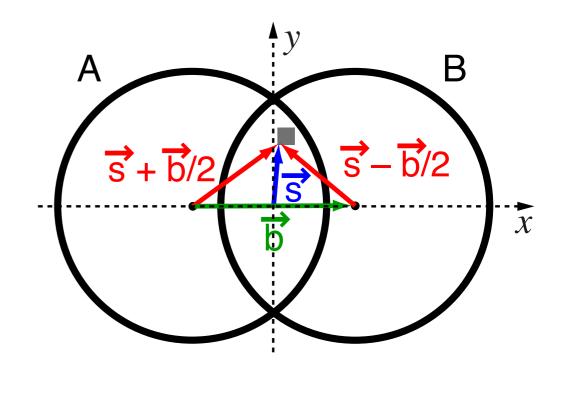
Difference between neutron and proton distribution small and typically neglected

Nuclear Thickness Function

side view:



transverse plane:



Projection of nucleon density on the transverse plane ("nuclear thickness fct."):

$$T_{A}(\vec{s}') = \int dz \; \rho_{A}(z, \vec{s}')$$
 (analogous for nucleus B)

Number of nucleon-nucleon encounters per transverse area element:

$$dT_{AB} = T_A(\vec{s} + \vec{b}/2) \cdot T_B(\vec{s} - \vec{b}/2) d^2s$$

Nuclear Overlap function and the number of nucleon-nucleon collisions

Nuclear overlap function:

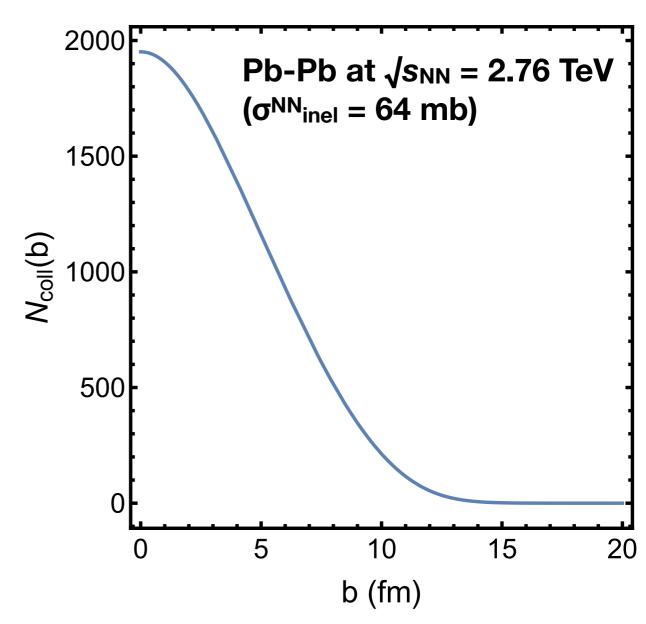
$$T_{\mathsf{AB}}(\vec{b}) = \int T_{\mathsf{A}}(\vec{s} + \vec{b}/2) \cdot T_{\mathsf{B}}(\vec{s} - \vec{b}/2) \, \mathsf{d}^2 s$$

Nuclear overlap function resembles integrated luminosity of a collider:

$$N_{\text{coll}}(b) = T_{\text{AB}}(b) \cdot \sigma_{\text{inel}}^{\text{NN}}$$

Or, more generally for a process with cross section σ_{int} :

$$N_{\rm int}(b) = T_{\rm AB}(b) \cdot \sigma_{\rm int}$$



Probability for an Inelastic A+B collision

Def's (different normalization of the thickness functions):

$$\hat{T}_{\mathsf{A}}(\vec{s}') = T_{\mathsf{A}}(\vec{s}')/A$$
 $\hat{T}_{\mathsf{B}}(\vec{s}') = T_{\mathsf{B}}(\vec{s}')/B$ $\hat{T}_{\mathsf{AB}}(\vec{b}) = T_{\mathsf{AB}}(\vec{b})/(AB)$

We can then write:

$$N_{\text{coll}}(b) = AB \hat{T}_{AB}(b) \cdot \sigma_{\text{inel}}^{NN}$$

$$p_{\mathsf{NN}} = \hat{T}_{\mathsf{AB}}(\vec{b}) \cdot \sigma_{\mathsf{inel}}^{\mathsf{NN}}$$

probability for a certain nucleon from nucleus A to collide with a certain nucleon from nucleus B

Probability for k nucleon-nucleon coll.:

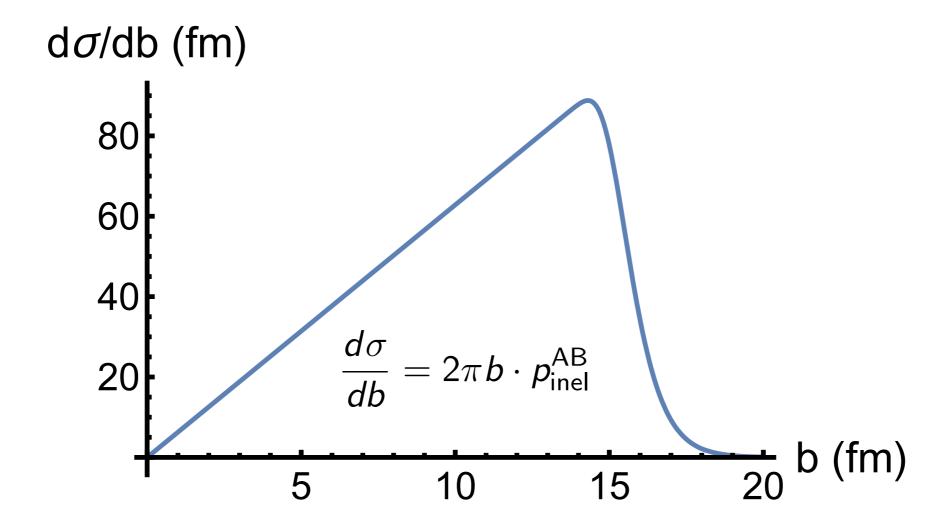
$$P(k, \vec{b}) = {AB \choose k} p_{NN}^k (1 - p_{NN})^{AB-k}$$

Probability for
$$k = 0$$
 is $(1 - p_{NN})^{AB}$. Thus:
$$(1 - x)^n = \exp(n \ln(1 - x))$$
$$\underset{\approx}{\times \to 0} \exp(-nx)$$

$$p_{ ext{inel}}^{ ext{AB}}(ec{b}) = 1 - (1 - \hat{T}_{ ext{AB}}(ec{b}) \cdot \sigma_{ ext{inel}}^{ ext{NN}})^{AB} pprox 1 - \exp(-AB\,\hat{T}_{ ext{AB}}(ec{b}) \cdot \sigma_{ ext{inel}}^{ ext{NN}})$$

Poisson limit of the binomial distribution

dσ/db for Pb-Pb



Total cross section:
$$\sigma_{\rm inel}^{\rm AB} = \int_0^\infty \frac{d\sigma}{db} \, db \approx 784 \, {\rm fm}^2 = 7.84 \, {\rm b}$$

Number of Participants

Probability that a test nucleon of nucleus A interacts with a certain nucleon of nucleus B:

$$p_{\mathsf{NN,A}}(\vec{s}) = \hat{T}_{\mathsf{B}}(\vec{s} - \vec{b}/2)\sigma_{\mathsf{inel}}^{\mathsf{NN}}$$

Probability that the test nucleon does not interact with any of the *B* nucleons of nucleus B:

$$(1-p_{\mathsf{NN},\mathsf{A}}(\vec{s}))^B$$

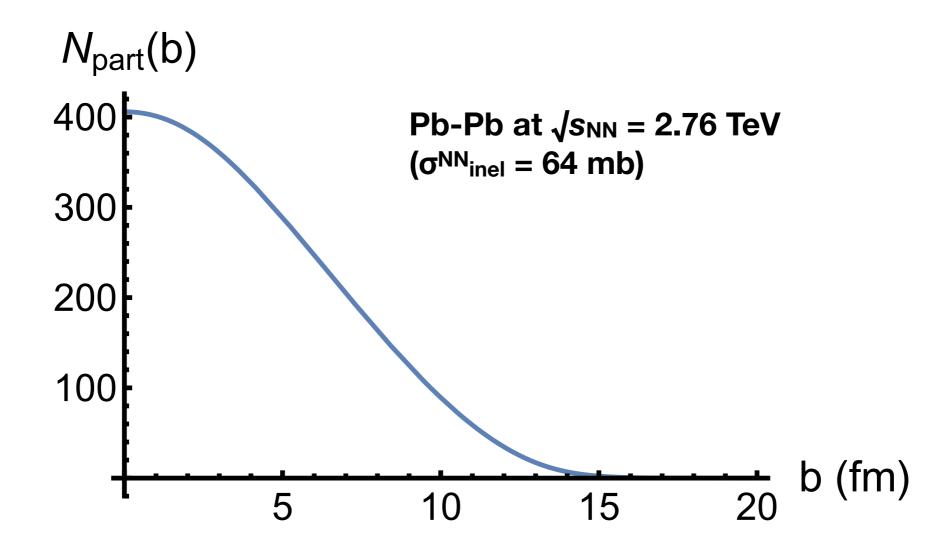
Probability that the test nucleon makes at least on interaction:

$$(1-(1-p_{\mathsf{NN},\mathsf{A}}(\vec{s}))^B pprox 1-\exp(-Bp_{\mathsf{NN},\mathsf{A}}(\vec{s}))^B$$

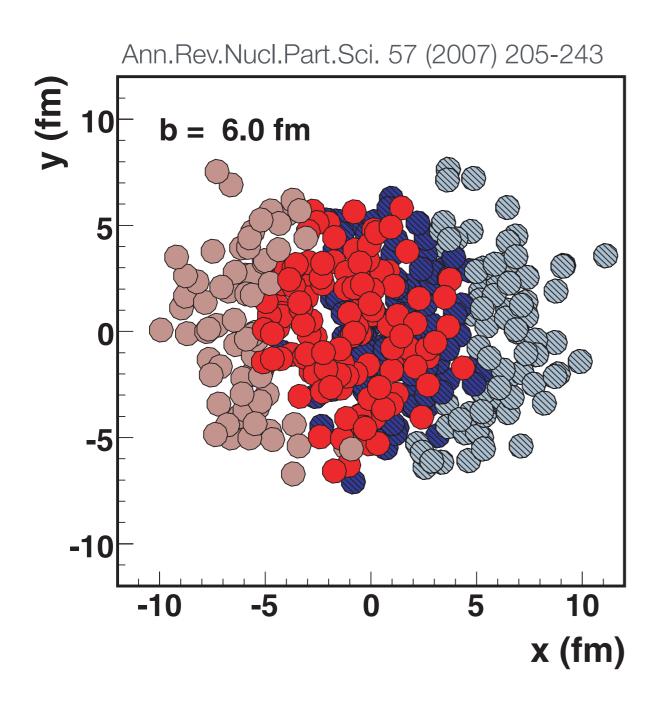
Number of participants:

$$\begin{split} \textit{N}_{\mathsf{part}}(\vec{b}) &= \textit{N}_{\mathsf{part}}^{\mathsf{A}}(\vec{b}) + \textit{N}_{\mathsf{part}}^{\mathsf{B}}(\vec{b}) \\ &= \int \textit{T}_{\mathsf{A}}(\vec{s} + \vec{b}/2) \cdot \left[1 - \exp(-\textit{T}_{\mathsf{B}}(\vec{s} - \vec{b}/2)\sigma_{\mathsf{inel}}^{\mathsf{NN}})\right] \, \mathsf{d}^2 s \\ &+ \int \textit{T}_{\mathsf{B}}(\vec{s} - \vec{b}/2) \cdot \left[1 - \exp(-\textit{T}_{\mathsf{A}}(\vec{s} + \vec{b}/2)\sigma_{\mathsf{inel}}^{\mathsf{NN}})\right] \, \mathsf{d}^2 s \end{split}$$

Npart vs Impact Parameter b



Glauber Monte Carlo Approach



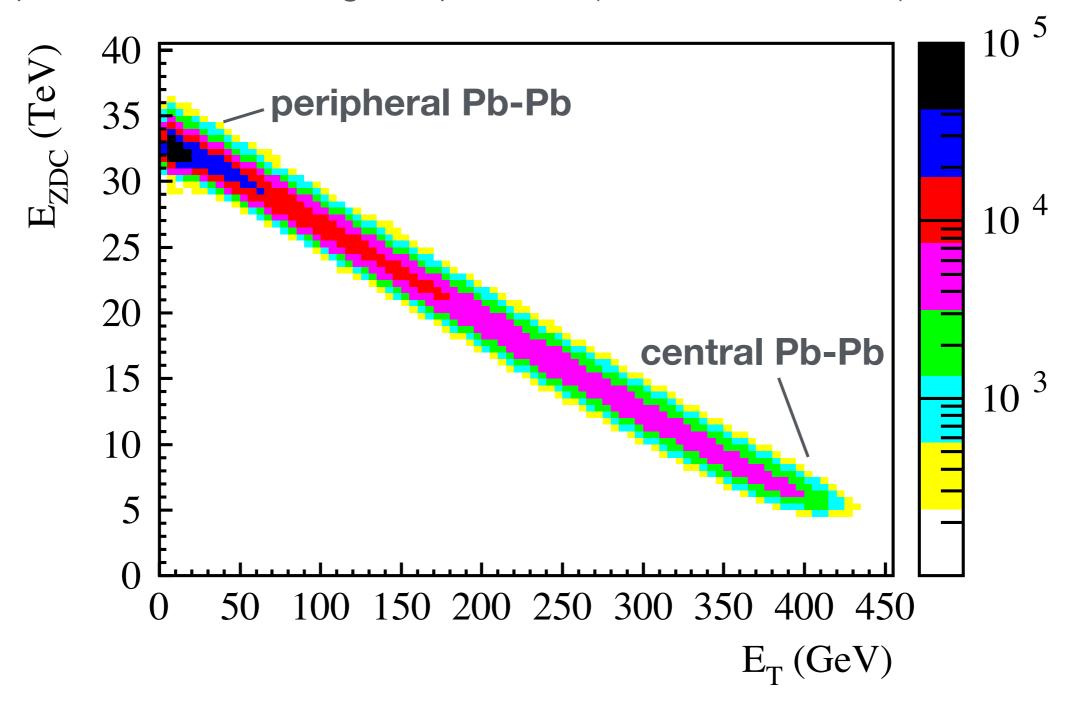
- Randomly select impact parameter b
- Distribute nucleons of two nuclei according to nuclear density distribution
- Consider all pairs with one nucleon from nucleus A and the other from B
- Count pair as inel. n-n collision if distance d in x-y plane satisfies:

$$d < \sqrt{\sigma_{
m inel}^{
m NN}/\pi}$$

• Repeat many times: $\langle N_{part} \rangle (b) \langle N_{coll} \rangle (b)$

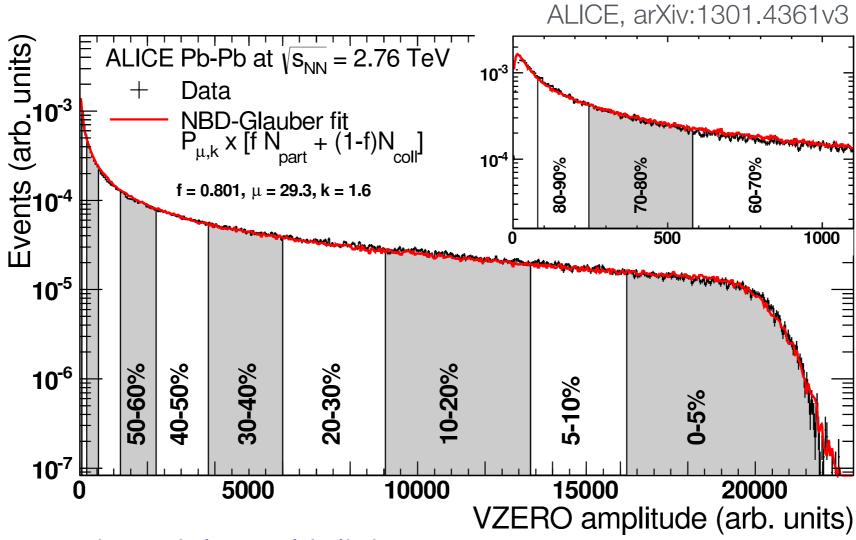
Centrality selection: Forward and transverse energy

Example: Pb-Pb, fixed-target experiment (WA98, CERN SPS)



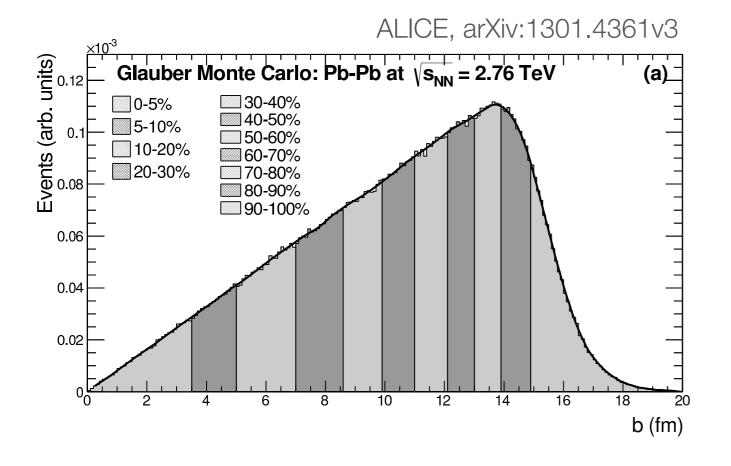
Both E_T and E_{ZDC} can be used to define centrality classes

Centrality Selection: Charged-Particle Multiplicity



- Measure charged particle multiplicity
 - ▶ ALICE: VZERO detectors (2.8 < η < 5.1 and -3.7 < η < -1.7)
 - Assumption: $\langle N_{ch} \rangle (b)$ increases monotonically with decreasing b
- Define centrality class by selecting a percentile of the measured multiplicity distribution (e.g. 0-5%)
 - Need Glauber fit to define "100%" (background at low multiplicities)

How $\langle N_{part} \rangle$, $\langle N_{coll} \rangle$, and $\langle b \rangle$ are Assigned to an Experimental Centrality Class?



Glauber Monte Carlo

- Find impact parameter interval
 [b₁, b₂] which corresponds to the same percentile
- Average $N_{part}(b)$, $N_{coll}(b)$, etc over this interval
- Example:Pb-Pb at √s_{NN} = 2.76 TeV
 - $\sigma_{NN}(inel) = (64 \pm 5) \text{ mb}$

Centrality	b_{\min}	$b_{ m max}$	$\langle N_{\rm part} \rangle$	RMS	(sys.)	$\langle N_{ m coll} \rangle$	RMS	(sys.)	$\langle T_{ m AA} angle$	RMS	(sys.)
	(fm)	(fm)	_						1/mbarn	1/mbarn	1/mbarn
0–5%	0.00	3.50	382.7	17	3.0	1685	140	190	26.32	2.2	0.85
5-10%	3.50	4.94	329.4	18	4.3	1316	110	140	20.56	1.7	0.67
10–20%	4.94	6.98	260.1	27	3.8	921.2	140	96	14.39	2.2	0.45
20–40%	6.98	9.88	157.2	35	3.1	438.4	150	42	6.850	2.3	0.23
40–60%	9.88	12.09	68.56	22	2.0	127.7	59	11	1.996	0.92	0.097
60-80%	12.09	13.97	22.52	12	0.77	26.71	18	2.0	0.4174	0.29	0.026
80–100%	13.97	20.00	5.604	4.2	0.14	4.441	4.4	0.21	0.06939	0.068	0.0055