Quark-Gluon Plasma Physics

5. Statistical Model and Strangeness

Prof. Dr. Klaus Reygers Prof. Dr. Johanna Stachel Heidelberg University SS 2019

Hadronization of the nuclear fireball

the fireball properties can be determined by measurement of the emitted particles In this chapter as first species: hadrons with up,down,strange constituent quarks

Strangeness production in hadronic interactions

Particles with strange quarks: $K^+ = (u\bar{s}), \ K^- = (\bar{u}s), \ K^0 = (d\bar{s}), \ \bar{K}^0 = (\bar{d}s), \ \phi = (s\bar{s}),$ $\Lambda = (uds), \ \Sigma = (qqs), \ \Xi = (qss), \ \Omega^- = (sss)$

Creation in collisions of hadrons:

Example 1: $p + p \rightarrow p + K^+ + \Lambda$, $Q = m_\Lambda + m_{K+} - m_p \approx 670 \text{ MeV}$

Example 2: $p + p \rightarrow p + p + \Lambda + \overline{\Lambda}$, $Q = 2m_{\Lambda} \approx 2230 \text{ MeV}$

Strangeness production in the QGP

 $Q_{
m QGP}pprox 2m_spprox 200\,{
m MeV}$

Q value in the QGP significantly lower than in hadronic interactions

This reflects the difference between the current quarks mass (QGP) and the constituent quark mass (chiral symmetry breaking)

Strangeness enhancement: One of the earliest proposed QGP signals

Strangeness equilibration was expected to be sufficiently fast

Quark composition of the ideal QGP

Particle densities for a non-interacting massive gas of fermions (upper sign)/ bosons (lower sign):

"Boltzmann approximation" (neglect "±1"): first term of the sum

$$n_{i} = g_{i} \frac{4\pi}{(2\pi)^{3}} \int_{0}^{\infty} \frac{p^{2} dp}{\exp\left(\frac{\sqrt{p^{2}+m^{2}}-\mu}{T}\right) \pm 1} = \frac{g_{i}}{2\pi^{2}} m^{2} T \sum_{k=1}^{\infty} \frac{(\mp 1)^{k+1}}{/k} \lambda^{k} \mathcal{K}_{2}\left(\frac{km}{T}\right)$$

$$\lambda = e^{\mu/T}$$
upper sign: fermions, lower sign: bosons
$$upper sign: fermions, lower sign: bosons$$

$$m_{u} = 2.2 \text{ MeV}, m_{d} = 4.7 \text{ MeV},$$

$$m_{s} = 96 \text{ MeV},$$

$$\frac{2(n_{s} + n_{\bar{s}})}{n_{u} + n_{\bar{u}} + n_{d} + n_{\bar{d}}} \approx 0.92 \text{ -} 0.98$$

$$\frac{2(n_{s} + n_{\bar{s}})}{n_{u} + n_{\bar{u}} + n_{d} + n_{\bar{d}}} \approx 0.92 \text{ -} 0.98$$

Fraction of strange quarks: A+A vs. e⁺e⁻, πp, and pp

Strangeness indeed enhanced in nucleus-nucleus collisions relative to e^+e^- , πp , and pp collisions

Strangeness Enhancement in Pb-Pb relative to p-Pb at $\sqrt{s_{NN}} = 17.3$ GeV

Ξ/π and Ω/π enhancement in Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV

Interestingly, ϕ/π very similar in pp, p-Pb, and Pb-Pb

Particle yields from the hadron resonance gas

- Idea: Freeze-out of the QGP creates an equilibrated hadron resonance gas
- The HRG then freezes out with a characteristic temperature T_{ch} close to T_c which determines the yields of different particle species
- What is the appropriate statistical ensemble for the theoretical treatment?

canonical ensemble:

N and V fixed, energy E of the system fluctuates $(E_s + E_b = E, T \text{ is given})$

pp collisions, strangeness locally conserved

Braun-Munzinger, Redlich, Stachel, nucl-th/0304013v1

grand-canonical ensemble:

V fixed, energy *E* and particle number *N* fluctuate (T, µ given)

central A-A collisions, local strangeness fluctuations possible,"there is a medium"

Grand canonical ensemble: Large volume limit of the canonical treatment

A. Tounsi, K. Redlich, hep-ph/0111159

Canonical suppression factor F_s :

$$n_{K}^{C} = n_{K}^{GC} \cdot F_{S}$$
$$F_{S} = \frac{I_{K}(2n_{K}^{GC}V)}{I_{0}(2n_{K}^{GC}V)}$$

- n_K : Density of particles with strangeness K = |S|, S =-1, -2, -3
 - *I_n*: Modified Bessel function of the first kind

Already at moderately central Pb-Pb collisions the grand canonical ansatz is justified

Statistical model (hadron gas, grand canonical ensemble)

Partition function (particle species *i*):

$$g_i = (2 J_i + 1) \text{ spin degeneracy factor}$$

$$E_i^2 = p_i^2 + m_i^2$$

$$In Z_i = \frac{Vg_i}{2\pi^2} \int_0^\infty \pm p^2 dp \ln(1 \pm \exp(-(E_i - \mu_i)/T))$$
"-" for bosons, "+" for fermions

Particle densities: $n_i = N/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 dp}{\exp((E_i - \mu_i)/T) \pm 1}$

For every conserved quantum number there is a chemical potential:

$$\mu_i = \mu_B B_i + \mu_S S_i + \mu_{I_3} I_{3,i}$$

Use conservation laws to constrain V, μ_s, μ_{I_3}

strangeness:

$$\sum_{i} n_i S_i = 0 \qquad \rightarrow \quad \mu_s$$

charge:

$$V\sum_{i}n_{i}I_{3,i}=\frac{Z-N}{2} \qquad \rightarrow \qquad \mu_{I_{3}}$$

baryon number:

 $V\sum_{i}n_{i}B_{i}=Z+N$ \rightarrow μ_{B}

Only two parameters left (T, μ_B) Example: Boltzmann approximation $n(\bar{p})/n(p) = \exp(-2\mu_B/T)$ \rightarrow determine (T, μ_B) for different $\sqrt{s_{NN}}$ from fits to data

Production of hadrons and (anti-)nuclei at LHC described quantitatively by GC statistical model

1 free parameter: temperature T T = 156.5 ± 1.5 MeV

agreement over 9 orders of magnitude with QCD statistical operator prediction (- strong decays need to be added)

 matter and antimatter formed in equal portions

• even large very fragile (hyper) nuclei follow the systematics <u>suggestion:</u> they are formed as compact multiquark states at hadronization and evolve into their wavefunctions

needs testing in Run3/4

χ^2 fit of the statistical models to LHC data

- Very good agreement with data
- $T = 156.5 \pm 1.5$ MeV, $\mu_{\rm B} = 0 \pm 2$ MeV, $V = 5330 \pm 400$ fm³

Comparison to Lattice QCD

$\sqrt{s_{NN}}$ dependence of T and μ_B

• Smooth evolution of T and μ_B with $\sqrt{s_{NN}}$

• T reaches limiting value of $T_{\text{lim}} = 159 \pm 2 \text{ MeV}$

K/π ratio vs. √s_{NN}

- Maximum in K+/ π + ("the horn") was discussed as a signal for the onset of deconfinement at $\sqrt{s_{NN}} \approx a$ few GeV
- However, in the GC statistical model the structure can be reproduced with *T*, µ_B that vary smoothly with √s_{NN}

Freeze-out points for $\sqrt{s_{NN}} \ge 10$ GeV from thermal model fits coincide with T_c from lattice calculations

- What is the origin of equilibrium particle yields?
 - General property of the QCD hadronization process ("particle born into equilibrium")
 - Or does the hadron gas thermalizes via particle scattering after the transition?
- Possible mechanism for fast thermalization after the transition: multi-hadron scattering resulting from
 high particle densities

Braun-Munzinger, Stachel, Wetterich, PLB 596 (2004) 61

Strangeness enhancement already in small systems: Multiplicity dependence of Ω/π in pp, p-Pb, and Pb-Pb

Significant increase in Ω/π with $dN_{ch}/d\eta$ already in pp and p-Pb

Even yields in e⁺e⁻ are not so far from chemical equilibrium

Statistical model + phenomenological factor $\gamma_{s} < 1$, reducing hadron yields by γ_{s}^{N} where *N* is the number of strange quarks (or antiquarks)

T not so different from the one in central A+A

QGP physics SS2019 | K. Reygers, J. Stachel | 5. Statistical Model and Strangeness 20

Summary/questions strangeness

- Strangeness is enhanced in A-A collisions relative to e+e- and pp
- LHC: Strangeness enhancement in high-multiplicity pp collisions approaches the enhancement in Pb-Pb
- Origin of the strangeness enhancement?
 - Collisional equilibration?
 - Or "born into equilibrium"?
 - Strange quark coalescence ("recombination")?
 - Or something else?
- Strangeness provides important information and probably points to QGP formation
 - But why does the statistical approach also work to some degree in e⁺e⁻ where no QGP is expected?
 - Better understanding of the mechanisms of strangeness enhancement is needed