Introduction to the Julia programming language
18 Fitting¶
Load data from a text file¶
In [5]:
using LsqFit, DelimitedFiles, Plots, StatsPlots, Formatting
data = readdlm("data/FP_basic_chi2_fit_data.txt", ',', Float64, '\n')
xd, yd, σ_yd = data[:,1], data[:,2], data[:,3]
data
5×3 Matrix{Float64}: 1.0 1.7 0.5 2.0 2.3 0.3 3.0 3.5 0.4 4.0 3.3 0.4 5.0 4.3 0.6
Define the fit model and fit the data¶
Fit model:
In [6]:
f(x, p) = p[1] .+ p[2] .* x
f (generic function with 1 method)
Fit the model to the data, taking error bars into account. For a non-linear fit, start values need to be defined:
In [15]:
wd = 1 ./ σ_yd.^2
pars = [0.5, 1.] # start values for the two fit parameters
fit = curve_fit(f, xd, yd, wd, pars)
fit.param
2-element Vector{Float64}: 1.1620658908607135 0.613944986880087
Get the fit results¶
Covariance matrix of the fit parameters:
In [8]:
cov = estimate_covar(fit)
2×2 Matrix{Float64}: 0.211186 -0.0646035 -0.0646035 0.0234105
Uncertainties of the fit parameters:
In [9]:
se = standard_errors(fit)
2-element Vector{Float64}: 0.4595501111513107 0.15300476704680768
Determine the reduced $\chi^2$:¶
In [10]:
chi2 = sum(fit.resid.^2)
printfmt("chi^2 / dof = {1:.3f} / {2:d}", chi2, dof(fit))
chi^2 / dof = 2.296 / 3
In [16]:
scatter(xd, yd, yerr = σ_yd, label = "", xlabel = "x", ylabel = "y",
markercolor="blue", markershape=:circle, size=(400,300))
plot!(xd, f(xd, fit.param), label = "")
Illustrate the correlation of the fit parameters (error ellipse)¶
In [17]:
covellipse(fit.param, cov, n_std=1, aspect_ratio=1, label="",
xlabel = "p0", ylabel = "p1", size=(400,300))
Introduction to the Julia programming language 18 Fitting