
Exercises for the lecture

„Moderne Methoden der Datenanalyse”

Prof. Dr. S. Hansmann-Menzemer, M. Schiller

Physikalisches Institut der Universität Heidelberg

Apr 27 2010

Very short introduction into ROOT

Open ROOT session by typing

> root

This runs root C/C++ interpreter. ROOT commands are C/C++ state-
ments, and ROOT can be e.g. used as a calculator:

root[] 1+sqrt(2)

To quit ROOT type (note the dot):

root[] .q

ROOT is an object-oriented package: every object has virtual method Draw().
Let’s create a function object:

root[] TF1 f1("func1","sin(x)/x",0.0,10.0)

Here:

"func1" unique object name
"sin(x)/x" math formula, uses standard C++ syntax
0.0,10.0 limits

Let’s draw it:

root[] f1.Draw()

This command opens a canvas with the default name c1 and default title
c1. Right mouse-click on the line. It opens a list of methods which class TF1

1



2

implements. Select GetLineAttributes. Change line color and width. This same
can be done from the ROOT prompt:

root[] f1.SelLineColor(kRed)

root[] f1.SetLineWidth(3)

In a similar way you can access the properties of the canvas. E.g. change
the canvas title:

root[] c1.SetTitle("new title")

Save the canvas into a file: go into upper menu, select File > Save as. To
print to a printer, do File > Print.

Especially important are histograms (distributions). Let’s define one:

root[] TH1D h1("h1", "my first histogram", 10, 0.0, 10.0);

Note D in the class name, it stands for double.

Here:

"h1" unique object name
"my first histogram" title to appear when the histogram is drawn
10 number of bins, of type int

0.0, 10.0 histogram limits, of type double

Let’s fill in some values:

root[] h1.Fill(0)

root[] h1.Fill(3)

...

Now let’s see how it looks:

root[] h1.Draw()

Now right-mouse-click on a histogram, select SetLineAttributes. The famil-
iar dialog will open. Change line width and color. Change fill color and fill
style. The fill color can be changed from the ROOT prompt as:

root[] h1.SetFillColor(kBlue)

Usually people work with macros, and want histograms to persist in memory,
so let’s define another histogram using new operator:

root[] TH1D* h2 = new TH1D("h2", "my second histogram", 10, 0., 10.);



3

Fill in some values

root[] h2->Fill(0)

...

Let’s create a new Canvas using new:

root[] TCanvas* myC = new TCanvas("myC", "my title")

Now this canvas is the “current” one.

Draw both histograms in the same canvas:

root[] h1->Draw();

root[] h2->Draw("same");

Let’s fit Gauss distribution to histogram h2. Right-click on a histogram,
open the dialog with histogram methods, select Fit. Fit dialog will open, with
the fields:

formula name of fitting function, e.g. gaus

option fitting option
goption g(raphical) option
xmin, xmax fitting range, default - all histogram range

For more on fitting functions see http://www.physi.uni-heidelberg.de/∼schiller/ex01/usefulROOT.

and http://root.cern.ch/download/doc/5FittingHistograms.pdf.

By default the χ2 fit is used. Let’s try log likelihood (takes empty bins into
account): set option = L and repeat the fit. Observe the difference!

If you want to have both fits plotted: option = L+ (adds the current fit to
the list of fits).

See ROOT prompt for the details of fit results. This is an output from
Minuit fitting package. Find parameter names, values, errors.

Now we can save the result of our work into a file. Open file histo.root for
writing (if it exist, it will be overwritten):

root[] TFile* file = new TFile("histo.root", "RECREATE");

Write your histos into it:

root[] h1->Write()

root[] h2->Write()

Delete the pointer to the file object (closes the file):



4

root[] delete file

Now let’s check the contents of the file. Open the file histo.root for reading:

root[] TFile* file = new TFile("histo.root", "READ");

Print info on the stored objects:

root[] file->Print()

Get an object by its name:

root[] TH1D* newh2 = (TH1D*)file->Get("h2")

Method Get returns a pointer to the object of type TObject. C++ requires
us to explicitely cast it into the pointer pointing to TH1D.

Now the histogram with the name h2 is in the memory, and we have newh2

pointing to it. You can Draw it in the current canvas:

root[] newh2->Draw()

You can edit it:

root[] newh2->SetName("new name")

Now try to write it back into the file:

root[] newh2->Write()

root[] Error in <TFile::WriteTObject>: Directory histo.root

root[] is not writable (Int_t)0

Ooops, of course, histo.root is open for READ-ing.

To simplify interactive work, open ROOT Browser

root[] TBrowser t

Navigate to ROOT Files/histo.root. Double click a histo to open it in the
current canvas.

You can also browse the directory structure in TBrowser, open root files to
view their contents, run root macros.

Now, if you have to type a lot of commands (maybe the whole analysis code!)
you write them to a macro and call it e.g. ex01.C.

Then you load it like



5

root[] .L ex01.C

and call any function defined in it like

root[] function(<list of arguments>)

Now let’s open

> emacs ex01.C &

and proceed with the exercises.


