
Exercises for the lecture

„Moderne Methoden der Datenanalyse”

Prof. Dr. S. Hansmann-Menzemer, M. Schiller

Physikalisches Institut der Universität Heidelberg

May 4th 2010

Exercise 2: Random Numbers

Monte Carlo simulations heavily rely on random numbers. In principle, random
physics processes like e.g. the radioactive decay of nuclei could be used to obtain
random numbers. However, for practical purposes, algorithms are used which
produce pseudo random numbers. It is very important that the numbers from
these algorithms do not contain any correlations and behave like real random
numbers. Many tests have been developped to check for a (hidden) structure in
a sequence of random numbers.

• Exercise 2.1

Write a random number generator for uniformly distributed numbers uj
between 0 and 1 by using the formula for a linear congruent generator:

ij = (a · ij−1 + c) mod m, uj = ij/m

where a, c and m are positive integer numbers. Choose a value for each
of the three parameters which seems appropriate for a random number
generator with a high periodicity, but be careful to avoid an overflow of
the integer value range.

• Exercise 2.2

Check the randomness of your random number generator from exercise 2.1,
of a linear congruent generator with a = 205, c = 29573 and m = 139968
and of the default random generator implemented in ROOT (gRandom->

Rndm()):

– Fill a one-dimensional histogram of k bins from 0 to 1 with N ≫ k
random numbers. Then calculate the value

χ2 =
k∑
i=1

(Ni −N/k)
2

N/k

where Ni is the number of entries in bin i. The obtained value should
follow a χ2-distribution with k−1 degrees of freedom. So on average
χ2/(k − 1) should be 1.

1



2

– Make a two-dimensional plot using n pairs of subsequent random
numbers. Use the class TGraph and its method SetPoint for this.
Draw ist with the Option "AP". The displayed points should be
equally distributed in the square [0, 1] × [0, 1] without showing as
structure.

– Apply the sequence or up-down test: Compare subsequent random
numbers and assign to the comparison the bit 0 if the successor uj+1

is smaller than the previous random number uj , assign the bit 1 if
uj+1 > uj . Now look at sequences of bits with the same value. Deter-
mine the length k of each sequence and count how many sequences of
length k were produced. This number N(k) should on average have
the following value:

N(k) =
2[(k2 + 3k + 1)N − (k3 + 3k2 − k − 4)]

(k + 3)!

Here N + 1 is the total amount of random numbers. Check also that
the relation

∑N
k=1
k ·N(K) = N holds.

Make a histogram of the obtained and of the expected N(k) and
plot both of them together. Use the method SetBinContent() for the
histogram of expected values. The method TMath::Factorial can be
used to calculate the factorial.

• Exercise 2.3

Calculate the integral ∫ 100

0

cos (2πx)dx

– analytically

– numerically by the approximation

∫ b
a

f(x)dx ≈

N∑
i=1

f(xi)∆x

where the integrand f is evaluated at N values with constant step
size ∆x = (b− a)/N , xi = a+ ∆x · (i+ 1/2).

– by Monte Carlo integration as a function of N = 1 to N = 150.
Add the expected error of the Monte Carlo integration to the plot.
The variance V of the Monte Carlo integration is given by V =
(b− a)2/N · V [f(xi)].

(Hint: Use TMath::TwoPi() for 2π)

• Exercise 2.4

Write a macro which generates two random number distributions accord-
ing to f(x) = 1 + x2 on the interval [−1, 1]. Use the random numbers ri
in the interval [0, 1] from a uniform random number generator.
We use the decomposition method where f(x) is split into two parts:
fa(x) = 1 and fb(x) = x2. So a certain fraction of the events have to
be generated according to fa and the other events according to fb. This



3

fraction is determined by calculating the integral of both function on the
interval [−1, 1]. Since

∫ 1

−1

fa(x)dx = 2

∫ 1

−1

fb(x)dx =
2

3

we have to generate on 3/4 of the cases a number according to fa(x),
otherwise according to fb(x).
First, a test value is generated. If this r1 is less than 0.75, we generate
a number according to fa. Then a new r2 is generated which gives x =
2 · r2 − 1. If r1 > 0.75 there are two ways to generate random numbers
distributed according fb:

– ”Hit and Miss” method

Generate values rj and rk. Transform both random numbers to the
considered intervals (here [−1, 1] and [0, fb,max] respectively, here
fb,max = 1. If rk,trans ≤ fb(rj,trans), here rk,trans = rk ≤ (rj,trans)

2 =
(2 · rj − 1)2, fill the histogram with rj,trans.

– Transformation method

∗ We have random numbers rj distributed according to a uniform
distribution g(r) and want to generate random numbers xi ac-
cording to a probability density function (p.d.f.) f(x) in the
interval [p, q].

∗ From the equation f(x)dx = g(r)dr
we get r = F (X) =

∫ x
−∞
f(x′)dx′, which we solve: x = F−1(r).

∗ If rj are uniformly distributed random numbers between F (p)
and F (q), the xi are following the p.d.f. f(x).

∗ The method works well if F (x) is analytical and can be easily
inverted.

Fill xi into a histogram. Here, xi = (3rj − 1)1/3, rjǫ[0,
2

3
].

(Hint: xy in C++: std::pow(x,y), from #include <cmath>)



4

Using a uniform random number generator, it is possible to generate a ran-
dom number according to any sample and thus simulate each distribution. There
are different methods which are summarised on the sheet “Summary of Main
Concepts”.

(Exercises with * can be skipped if no time is left.)

• Exercise 2.5*

Generate random numbers according to an exponential distribution
exp (−x) for x > 0. Take uniformly distributed random numbers and
apply the transformation method. Write 100,000 expontenially distributed
random numbers to an ntuple (root class TNtuple).

• Exercise 2.6*

Use the uniform random number generator for simulating the coin flipping
of eight coins. Let us do this a thousand times. When the random number
is greater or equal 0.5, we will call it head (1), otherwise tail (0).

– Plot the average sum as a function of the flip number. To calculate
the average sum, use the running average. The running average is
defined as

µk =
k − 1

k
µk−1 +

1

k
xk

where µ is the average, k the number of flips, xk is the averaged coin
flip result and µ0 = x0. The running average is a very handy tool
since it is easily updated after every new measurement and it avoids
problems with large sums.

– Occasionally you will throw 5 heads and 3 tails.(What do you expect
how often this will happen?) Plot the distribution of the difference
of the flip number, e.g. if you throw this combination in experiment
5 and then again in 9, the difference is 4.
Notice that you have generated a Poisson distribution using a uniform
random number generator. Make an exponential fit and explain the
fit result.


