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Exercise 4: Simulation of a Photomultiplier

A photomultiplier is a device capable of detecting individual photons as illus-
trated in fig. 1. A photon strikes the photocathode, where there is a certain
probability for it to eject an electron (called a photoelectron). The photoelec-
tron is accelerated in an electric field towards an electrode (called dynode). In
the collision with the first dynode, the photoelectron can liberate further elec-
trons. These are accelerated towards the second dynode, where more electrons
are produced. This continues through a series of stages until the electrons pro-
duced at the final dynode are collected. The number of electrons produced at
the i-th dynode for each incoming electron can be modeled as a Poisson variable
ni with mean value νi, which in general can be different for each stage. Suppose
the photomultiplier has N dynodes. The number of electrons nout produced at
the final stage for a single incident photoelectron has an expectation value

v̄out = E[nout] =

N
∏

i=1

νi (1)

Further information on photomultipliers can be found in:

• W. R. Leo, Techniques for Nuclear and Particle Experiments, Chapter 8,
Springer Verlag, Heidelberg.

• K. Kleinknecht, Detektoren für Teilchenstrahlung, Chapter 4.1, Teubner,
Stuttgart.

For the following exercises, copy the template program pmt.cc and the corres-
ponding Makefile to your working directory.

Exercise 4.1

Write a Monte Carlo program to determine the distribution of the number
of electrons nout at the end of N = 6 dynodes produced by a single initial
photoelectron.

For this, generate Poisson random numbers with the ROOT function gRandom

->Poisson(nu) with ν = 3.0 for each dynode. Run the program to simulate the
passage of M = 10000 initial photoelectrons, one-by-one, through the detector.
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Figure 1: Schematic drawing of a photomultiplier tube.

Write the number of photoelectrons being emitted after each dynode stage into
a histogram and, in particular, the number emitted from the final stage, nout.
Estimate the sample mean and variance using

n̄out =
1

M

M
∑

i=1

nout,i (2)

V (nout) =
1

M − 1

M
∑

i=1

(nout,i − n̄out)
2 (3)

Compare the sample mean to the value from equation 1. Compare the sample
variance (or standard deviation σ(nout) =

√

V (nout)) to the value that one
would obtain from a Poisson-distributed variable with mean νout. Form equation
3 in such a way that one loop is enough to calculate it. Explain qualitatively
why the standard deviation of nout is much larger than in the Poisson case.

Implementation proposal:

In the template, we suggest to implement Exercise 4.1 in the function dynodes6

which takes five parameters: (1) the expectation value of the first dynode ν1,
(2) the expectation value of the other dynodes (2-6), (3) the number of dynodes
in the PMT, (4) the number of experiments M , (5) a pointer to an array of
histograms and (6) a pointer to a profile histogram (needed in Exercise 3).
Further we suggest to implement the individual experiment in which one initial
photoelectron is traced through the photomultiplier in the function pmt.

Exercise 4.2

Ideally, one would like the standard deviation of n̄out to be as small as possible
in order to determine as accurately as possible the number of photoelectrons
emitted from the cathode (and thus estimate the number of photons entering the
detector). In some applications, one would like to have the standard deviation
small enough to distinguish between 1 and 2 photoelectrons and therefore one
tries to have a relative resolution, i.e. the ratio of the standard deviation to
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the mean, less than unity. One way of achieving this is to increase the mean
number of electrons produced at the first dynode. This can be done either by
increasing the accelerating electric field or by using a dynode metal with a low
work function, i.e. a high probability for secondary electron emission.

Repeat the simulation from Exercise 4.1 while increasing the mean number
of electrons emitted by the first dynode to ν1 = 6.0. Estimate the ratio of
the standard deviation to the mean of nout for both values of ν1. Explain
qualitatetively why this gives a better resolution than in the case with equal
νi. Why does it not help much to increase the gain of the dynodes in the later
stages of the photomultiplier?

Exercise 4.3

Show that the mean of nout is proportional to the number of electrons emitted
by the first dynode. Use profile histograms to show this. How many electrons
are emitted per electron of dynode one?

Exercise 4.4*

Extend your program to simulate N = 12 dynodes. It would take too much
computing time to simulate the collision of each electron with each dynode.
Instead, use the output of Exercises 4.1 and 4.2 for N = 6 with enough events
to obtain a good estimate of the distribution of nout (e.g. at least M ∼ 104

events in a histogram with 50 bins from 0 ≤ nout ≤ 5000). Next, generate
random numbers that follow this distribution using e.g. the acceptance-rejection
method. For each electron obtained after the first six dynodes, generate in a
similar way the number of electrons that it produces in the next six. For the
first six stages, use a distribution of nout based on ν1 = 6.0, ν2−6 = 3.0; for the
last six dynodes, take all νi = 3.0. Repeat this Monte Carlo experiment 10,000
times.

Implementation proposal

The template contains a function dynodes12 which can be used to implement
the algorithm described above. dynodes12 is meant to contain the code for one
experiment.


