
Exercises for the lecture

„Moderne Methoden der Datenanalyse”

Prof. Dr. S. Hansmann-Menzemer, M. Schiller

Physikalisches Institut der Universität Heidelberg

June 8th 2009

Exercise 5: Maximum Likelihood Fit

The fitting of parametrised functions to measured data is important for checking
models and determining their parameters. However, there are some pitfalls
which can lead to wrong conclusions.

Exercise 5.1

We have generated exponential distributed random numbers in Exercise 2.5 and
stored in an ntuple. These numbers can be interpreted as the measurements of
the decay times of particles, the exponential distribution

fτ (t) =
1

τ
e−t/τ

is used to describe the lifetime τ of these particles. Remember, we have gener-
ated the distribution with τ = 1. First, use 50 entries from your ntuple for the
fit.

We we will use the package Minuit to perform an unbinned likelihood-fit
to estimate the lifetime τ of the particles. Minuit is a very efficient package for
minimisation and originates from the CERN library. It was ported to C++ and
is available within the Root environment. The corresponding class is named
TMinuit. We already used the package in previous exercises when we invoked a
fit to a histogram in an interactive Root session.

The likelihood-function is defined as:

L(~θ) =
n∏

i=1

f(xi, ~θ)

where the xi are our (simulated) data following the probability density function

f(x,~θ) and ~θ is the (set of) parameter(s) we want to determine. Note that L(~θ)

is regarded as a function of ~θ, the data ~x is treated as constant (the experiment
is over). We expect that the likelihood function gives a high value for the true

value of the fitted parameter ~θ.
For practical reasons (which?), one minimises the negative log-likelihood

function:

−LogL(~θ) = −

n∑

i=1

log f(xi, ~θ)

1



2

Note that we make an unbinned fit here. What is the advantage over a
binned fit?

To use Minuit, you have to provide a user-defined function fcn which is
used to compute the value of the function to be minimised:

void fcn(Int_t& npar , Double_t* gin , Double_t& f, Double_t*

par , Int_t iflag);

This is the meaning of the variables:

npar number of free parameters involved in minimisation
gin computed gradient values (optional)
f function to be minimised
par vector of constant and variable parameters
flag to switch between several actions of FCN

In the template we have already added code to cover cases where the function
should do nothing, e.g. when called for initialization. It is left to you to program
the default case. You need to access the ntuple with the random numbers
(already done in the template).

The estimated value of the lifetime is stored in par[0].
double EstimatedTau = par[0];

Add a loop over the entries of the tree and calculate -LogL. The i-th value in
the ntuple can be accessed by first calling GetEntry(i) and then GetArgs()[0]

(gives 0th argument) of the ntuple.
After you have finished the calculation of the likelihood function in fcn you

need to setup Minuit. Create an instance of the class TMinuit and tell Minuit

the name of the function fcn used in the minimisation process:

TMinuit *minu = new TMinuit(NumPar);

minu ->SetFCN(fcn);

where NumPar indicates the number of parameters to be fitted (in our case, we
only have one free parameter).

The Minuit package is controlled via a number of commands which you
have to call subsequently. First, you need to define two variables:

double arglist [10];

int ierflg = 0;

You may set the print level of Minuit’s output:

minu ->SetPrintLevel (1);

The setting 1 (as above) means the default level of output, −1 means no output.
Next, introduce all parameters to Minuit:

minu ->mnparm(ParID , "ParName", StartValue , StepSize ,

LowerBound , UpperBound , ierflg);

if (ierflg != 0) cout << ‘‘ Error setting parameter ‘‘ <<

endl;

ParID is an integer valued variable used to indicate the number of the pa-
rameter. The first parameter has the number 0. "ParName" is an arbitrary name
for the parameter to be fitted. You also have to provide a value at which the
fit starts (StartValue) and a step size (StepSize). You may limit the range of



3

values the parameter can take (e.g. to prevent unphysical solutions): Param-
eter ∈ [LowerBound, UpperBound]. Use 0.0 if you don’t want a boundary. Each
parameter in the fit has to be introduced to Minuit in this way.

Before you can start the fit, you need to tell Minuit that you are going to
perform a likelihood fit (and not a χ2 one1). To do so, use the following piece
of code:

arglist [0] = 0.5;

minu ->mcexcm("SET ERR", arglist , 1, ierflg);

Then, set the maximal number of iterations Minuit may use in the fit, e.g.

arglist [0] = 500;

Use again the pattern

minu ->mnexcm("COMMAND",arglist , 1, ierflg);

to steer Minuit. To actually do the fit, use the following commands (in the
given order):

"SIMPLEX" (a “simple” algorithm to find a first estimate of the minimum)
"MIGRAD" (a more sophisticated algorithm)
"HESSE" (to compute the Hessian matrix for the error calculation)
"MINOS" (to calculate errors)

Note that all commands have to be in capitals. After the fit has completed,
you probably want to see the results:

double fmin ,edm ,errdef;

int nvpar ,nparx ,icstat;

minu ->mnstat(fmin , edm , errdef , nvpar , nparx , icstat);

minu ->mnprin(4,fmin);

The command mnstat retrieves the values at the minimum from Minuit and
mnprin prints it (here, a verbosity level of 4 was chosen). To store the fit-result
in variables, the following command is used:

minu ->mnpout(ParID , chname , Value , ParErr , LowerLimit ,

UpperLimit , InternalNr);

where ParID is the number associated with the name used in the definition
of the parameter, chname is a variable of type TString, Value contains the
value of the parameter at the minimum with the associated (parabolic) error
ParErr. LowerLimit and UpperLimit contain the values of the parameter bounds,
InternalNr is an integer-valued variable containing an internal number (if any).

Plot a histogram from 0 to 5 with the entries used in the log likelihood fit
together with the fitted function normalised to the number of entries. Display
the log likelhood value as a function of the fit parameter τ from 0.5 to 5. What
can be learned from this plot about the errors of the fitted parameter? Redo
this exercise with all entries in the ntuple.

1The uncertainties of the fitted parameters are determined from the curvature of the func-
tion which is minimized in the fit. The common definitions of χ2- and likelihood fits differ in
terms of their normalization, and hence, the meaning of the curvature. Minuit was written
with χ2 fits in mind (and its default error definition is indeed 1.0), this has to be adjusted
for likelihood fits. Can you work out where this difference comes from?



4

Exercise 5.2

An estimator, in particular from the maximum likelihood method, may not
be an unbiased estimator of the parameter’s true value. Remember that an
estimator is said to be unbiased if its expectation value is equal to the true
value, i.e. for parameter a

< â >= a

In case you are worrying, note that in almost all cases the maximum likelihood
estimator is unbiased if the number of data points are large. For any probability
density function, the sample mean is an unbiased estimator of the expectation
value.

You can test whether or not the estimator for τ is biased by repeating Ex-
ercise 1 a number of times, each time based on an independent random dis-
tribution fτ (t). Take each time 50 different events from the ntuple to examine
this.

Exercise 5.3

Repeat Exercise 5.2 but this time make a likelihood fit for λ = 1/τ instead of τ .
Is 1/τ an unbiased estimator for the true quantity? Try it also with less events
in an experiment (e.g. 5). What do you expect for the mean of the fitted τ and
λ?


