

Recent CP violation measurements

Recap of last week

What we have learned last week:

- Indirect searches (CP violation and rare decays) are good places to search for effects from new, unknown particles.
 - Example from past: GIM mechanism
- Symmetries are a very important concept in physics
 - · Lead to conservation laws, new theories, etc.
- P (parity) and C (charge conjugation) are completely broken in weak interactions
 - CPT is still an exact symmetry (required by field theory).
- Weak interaction shows a small CP violation.
 - Not enough to explain baryon asymmetry in the Universe.
- Fermion masses and the CKM matrix originate from the Yukawa couplings with the Higgs.
 - V_{CKM} relates the quarks in the mass eigenbase with the weak eigenbase.
- V_{CKM} has one complex phase which is responsible for CP violation.
 All current CP-violating measurements are consistent with this single phase.

Wolfenstein Parametrization (recap)

Makes use of the fact that the off-diagonal elements are small compared to the diagonal elements.

 \rightarrow Expansion in λ = V_{us}, A = V_{cb}/ λ^2 and ρ , η .

$$V = \begin{pmatrix} 1 - \lambda^{2} / 2 & \lambda & A\lambda^{3} (\rho - i\eta) \\ -\lambda & 1 - \lambda^{2} / 2 & A\lambda^{2} \\ A\lambda^{3} (1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{pmatrix} + O(\lambda^{4})$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

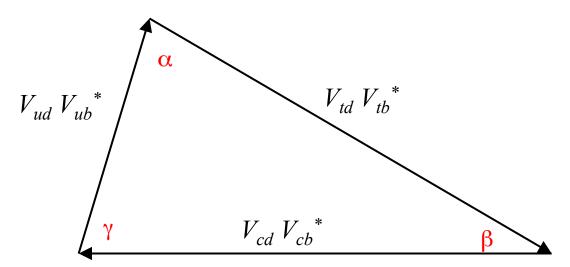
$$\lambda \sim 0.22 \text{ (sinus of Cabibbo angle)}$$

$$A \sim 1 \text{ (actually 0.80)}$$

$$\rho \sim 0.14 \\ \eta \sim 0.34$$

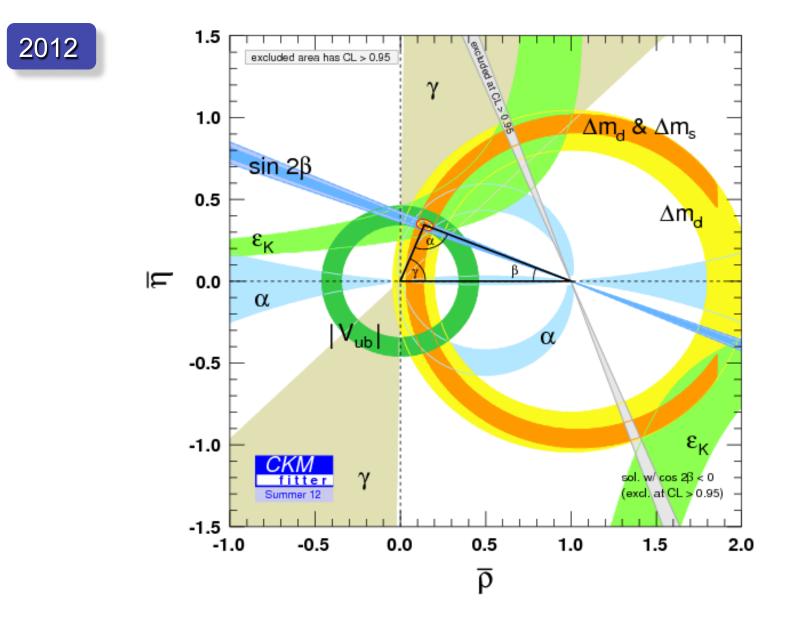
CKM angles and unitarity triangle

Writing the complex elements explicitly:

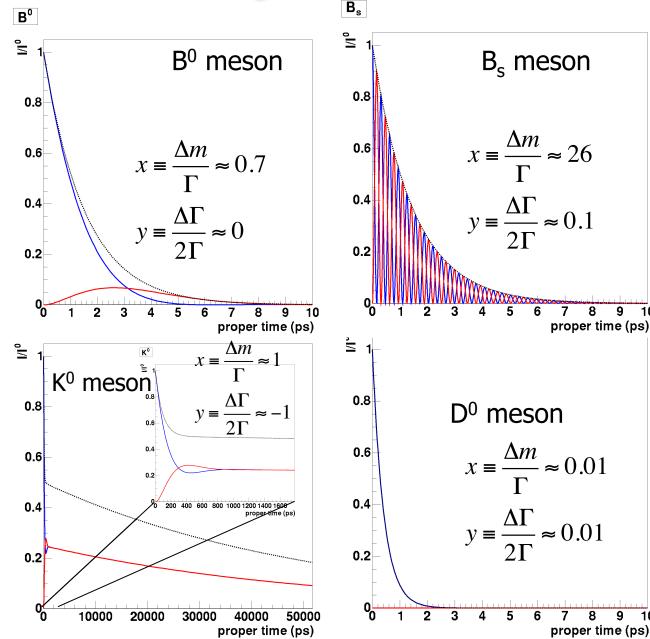

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda \\ -\lambda & 1 - \lambda^2 / 2 \\ -\lambda^3 e^{-i\beta} & -\lambda^2 e^{-i\beta_s} & 1 \end{pmatrix} + O(\lambda^4)$$

Definition of the angles:

$$\alpha \equiv \arg\left(-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right)$$
$$\beta \equiv \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{td}V_{tb}^{*}}\right)$$
$$\gamma \equiv \arg\left(-\frac{V_{ud}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right)$$
$$\beta_{s} \equiv \arg\left(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right)$$


Using one of the 9 unitarity relations: $V_{\text{CKM}}^{\dagger}V_{\text{CKM}} = 1$ Multiply first "d" column with last "b" column:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$


Progress in UT

Mixing of neutral mesons (recap)

The 4 different neutral meson systems have very different mixing properties.

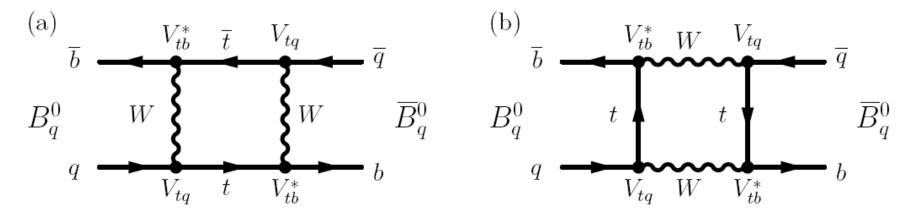
B_s system: very fast mixing

9 10

9

10

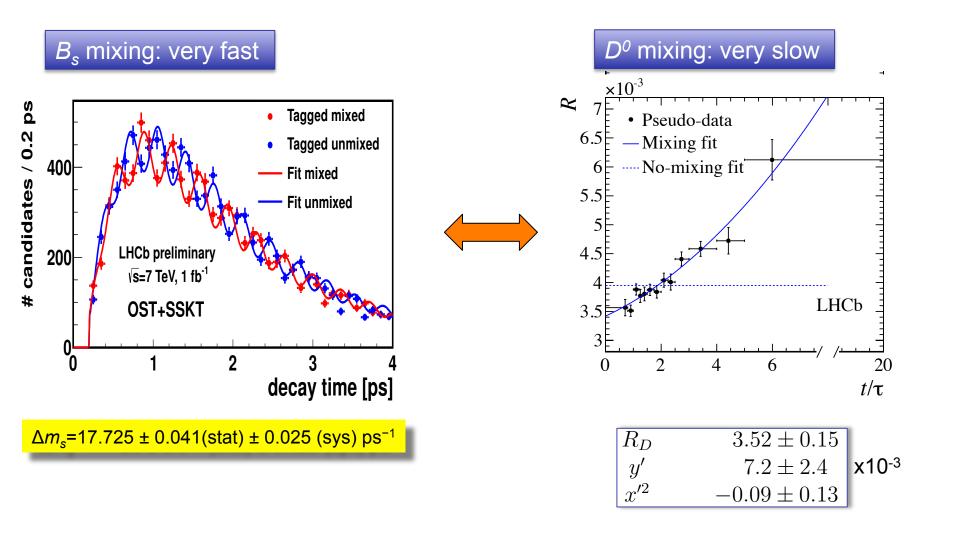
Kaon system: large decay time difference.


Charm system: very slow mixing

High Energy Frontier - Recent Results from the LHC, 2013

The weak box diagram

These two diagrams contribute to mixing in B_{d,s} system:



The (heavy) top quark dominates the internal loop. No GIM cancellation (if u,c,t would have the same mass these diagrams would cancel)

Why is are the oscillations in the B_s system so much faster than in B_d ? Why is the mixing in the D system so small? Oscillations in B_d versus B_s system: V_{td} versus V_{ts} Order λ^3 Order λ^2 \rightarrow Much faster oscillation in B_s system (less Cabbibo suppression). In the D system, the d,s,b quarks in internal loop (no top): small mixing.

Recent measurements: two extremes

Both measurements very challenging

CP violation

So we just learned that neutral mesons mix, that we can actually measure the oscillations, but what has this to do with CP violation?

Types of CP violation

Phenomenologically, there are 3 types of CP violation:

Types of CP violation

Phenomenologically, there are 3 types of CP violation:

- 1. CPV in mixing
- 2. CPV in decay
- 3. CPV in the interference between mixing and decay

1. CP violation in mixing

We had already the probability that an initially pure B^0 or \overline{B}^0 oscillates into \overline{B}^0 or B^0 :

$$\begin{aligned} |\langle B^{0} | B^{0}_{\text{phys}}(t) \rangle|^{2} &= |g_{+}(t)|^{2} ,\\ |\langle \overline{B}^{0} | B^{0}_{\text{phys}}(t) \rangle|^{2} &= \left| \frac{q}{p} \right|^{2} |g_{-}(t)|^{2} ,\\ |\langle B^{0} | \overline{B}^{0}_{\text{phys}}(t) \rangle|^{2} &= \left| \frac{p}{q} \right|^{2} |g_{-}(t)|^{2} ,\\ |\langle \overline{B}^{0} | \overline{B}^{0}_{\text{phys}}(t) \rangle|^{2} &= |g_{+}(t)|^{2} , \end{aligned}$$

Not the same if $|q/p| \neq 1$

 \rangle (

One can see that in case $|q/p| \neq 1$ the oscillation probability $\mathcal{P}(B^0 \rightarrow \overline{B}^0)$ is different from the CP conjugate process $\mathcal{P}(\overline{B}^{0} \rightarrow B^{0})$.

Remember that:

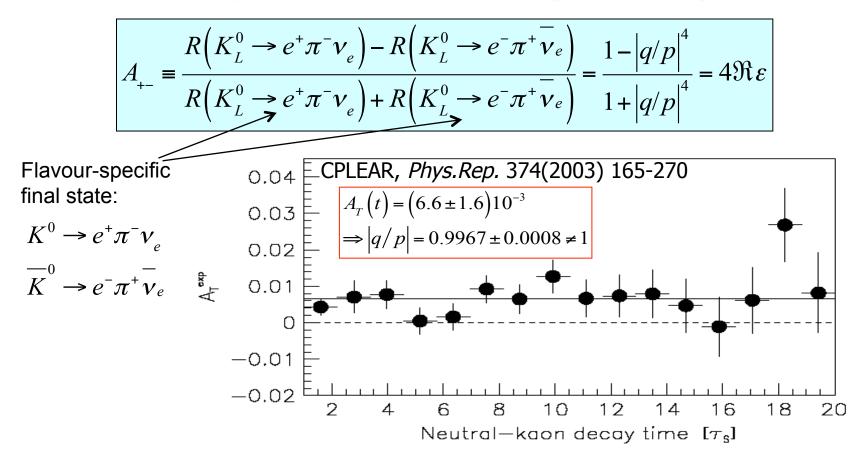
$$\frac{H}{D} = -\sqrt{\frac{M_{12}^* - i\Gamma_{12}^*/2}{M_{12} - i\Gamma_{12}/2}} \qquad \qquad H = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$$

In the B_d and B_s systems Γ_{12} is small \rightarrow Small CP violation in mixing. (do you remember why Γ_{12} is small?)

1. CP violation in mixing

Remember that:

$$\frac{q}{p} = -\sqrt{\frac{M_{12}^* - i\Gamma_{12}^*/2}{M_{12} - i\Gamma_{12}/2}}$$


Requirements for CP violation in mixing, i.e. $|q/p| \neq 1$

- M_{12} and Γ_{12} must be non-negligible.
- M_{12} and Γ_{12} must have a phase difference.

 \rightarrow CP violation in mixing is due to the interference between the amplitudes M₁₂ and Γ_{12} . (between off-shell and on-shell mixing amplitudes)

Example of CPV in mixing: kaon system

CP violation in mixing small in SM:		
K ⁰ system:	Order 1%	
D ⁰ system:	Order 10 ⁻⁵)
B_d system:	Order 5x10 ⁻⁴	Not yet observed
B _s system:	Order 10 ⁻⁵	

High Energy Frontier - Recent Results from the LHC, 2013

Searches for mixing CPV in B_{d.s}

Asymmetry for B_d : $a_{sl}^d = \frac{\Gamma(\overline{B}^0 \to D^- \mu^+) - \Gamma(B^0 \to D^+ \mu^-)}{\Gamma(\overline{B}^0 \to D^- \mu^+) + \Gamma(B^0 \to D^+ \mu^-)} = \frac{1 - (q/p)^4}{1 + (q/p)^4}$

Asymmetry for B_s : (substitute d \rightarrow s)

$$a_{sl}^{s} = \frac{\Gamma(\overline{B_{s}^{0}} \to D_{s}^{-}\mu^{+}) - \Gamma(B_{s}^{0} \to D_{s}^{+}\mu^{-})}{\Gamma(\overline{B_{s}^{0}} \to D_{s}^{-}\mu^{+}) + \Gamma(B_{s}^{0} \to D_{s}^{+}\mu^{-})} = \frac{1 - (q/p)^{4}}{1 + (q/p)^{4}}$$

Standard Model for B

$$a_{sl}^{s} = (1.9 \pm 0.3) \times 10^{-5}$$

 $a_{sl}^{d} = (-4.1 \pm 0.6) \times 10^{-4}$

Very similar to kaon system

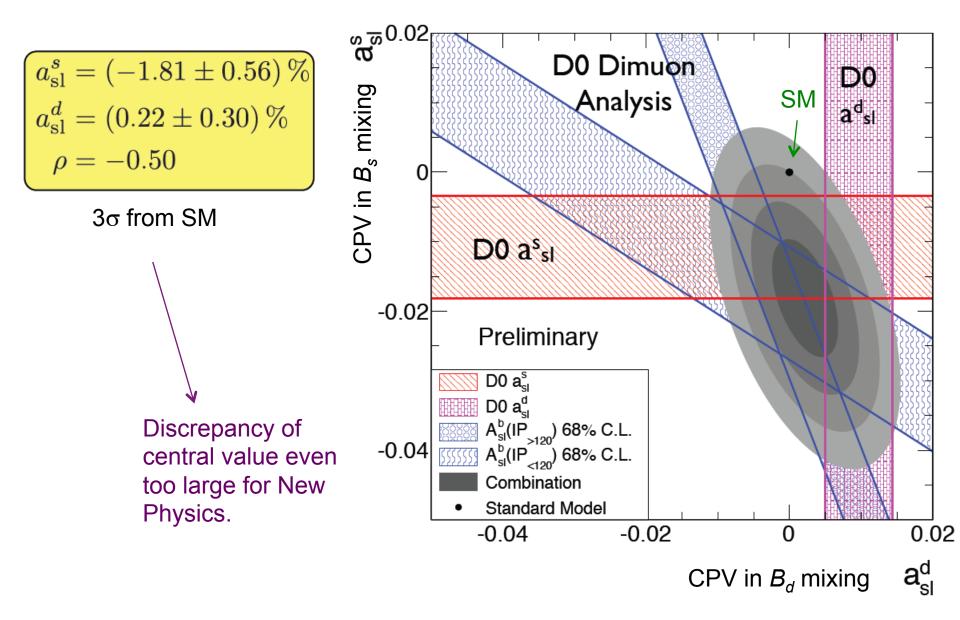
Searches for mixing CPV in $B_{d,s}$

Possible measurements

Dimuon analysis:

Consider that muons from two B decays can be like-sign: one mixes and the other not.

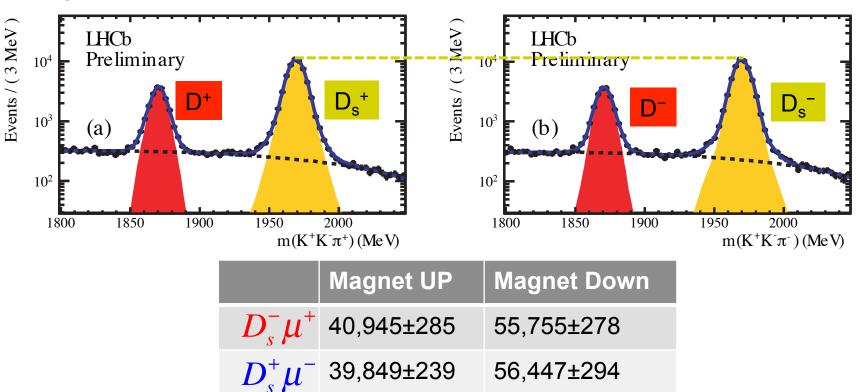
 \rightarrow contains contribution from both B_d and B_s


Untagged analysis:

$$\frac{\Gamma(D_{(s)}^{-}\mu^{+}) - \Gamma(D_{(s)}^{+}\mu^{-})}{\Gamma(D_{(s)}^{-}\mu^{+}) + \Gamma(D_{(s)}^{+}\mu^{-})} \approx \frac{a_{sl}}{2}$$

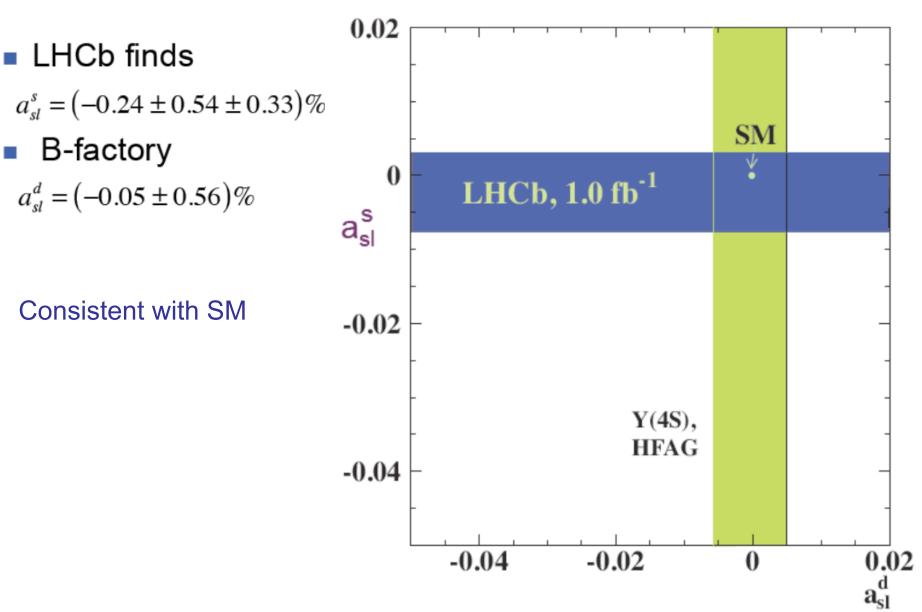
Dilutes sensitivity by 50% (compared to 3% from flavour tagging) \rightarrow need to measure production asymmetry and detection asymmetry

a_{sl} according to D0



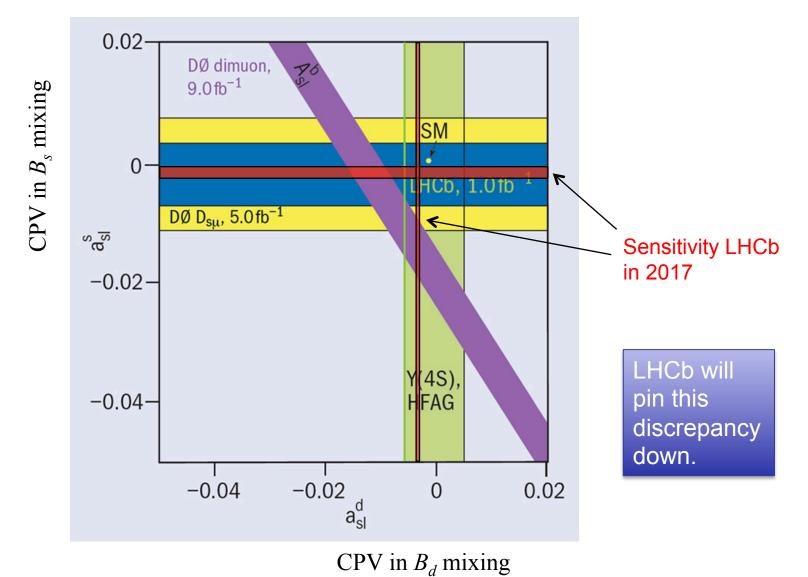
LHCb's measurement of a_{sl}^s

$B_s^0 \to D_s^+ (\to \phi \pi^+) \mu^-$


- Effect of B_s production asymmetry is reduced to negligible level by rapid mixing oscillations
- Calibration samples (J/ ψ , D^{*+}) used to measure detector trigger, track & muon ID biases

Magnet down:

a_{sl} according to rest of world



Outlook

Semileptonic measurement of CPV in B mixing

2. CP violation in decay

Æ

We define the decay amplitudes as:

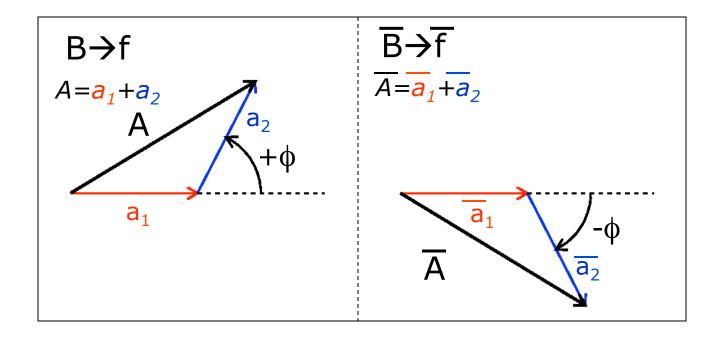
$$A_f = \langle f | T | B^0 \rangle \quad , \quad \bar{A}_f = \langle f | T | \bar{B}^0 \rangle A_{\bar{f}} = \langle \bar{f} | T | B^0 \rangle \quad , \quad \bar{A}_{\bar{f}} = \langle \bar{f} | T | \bar{B}^0 \rangle$$

CP violation in decay means: $|A_f| \neq |\bar{A}_{\bar{f}}|$

In other words:

$$\Gamma(B \to f) \neq \Gamma(\overline{B} \to \overline{f})$$

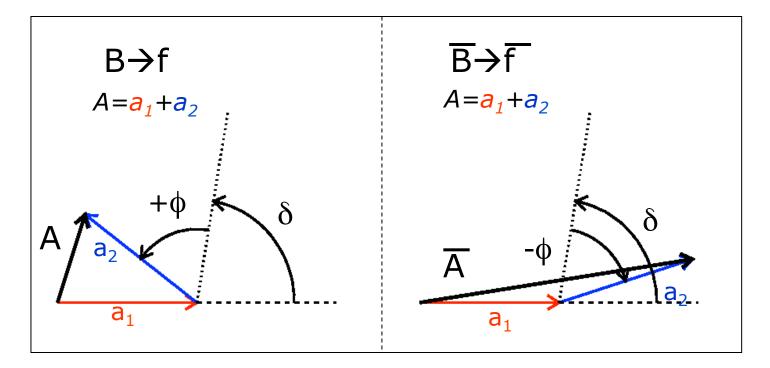
This only occurs when there are different decay amplitudes (Feynman diagrams) to the same final state with different weak phases and different strong phases:


Weak phase changes sign under CP transformation

$$A_{f} = \sum_{k} A_{k} e^{i\delta_{k}} e^{i\phi_{k}} \quad , \quad \bar{A}_{\bar{f}} = \sum_{k} A_{k} e^{i\delta_{k}} e^{i\phi_{k}}$$

Strong phase invariant under CP transformation

2. CP violation in decay

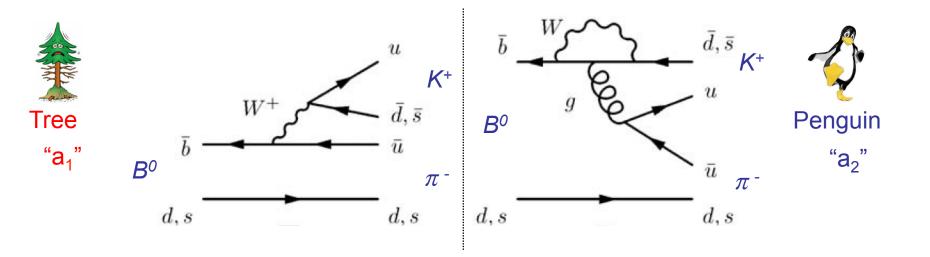


No strong phase difference $\rightarrow |A_f| = |\bar{A}_{\bar{f}}|$

No CP violation

2. CP violation in decay

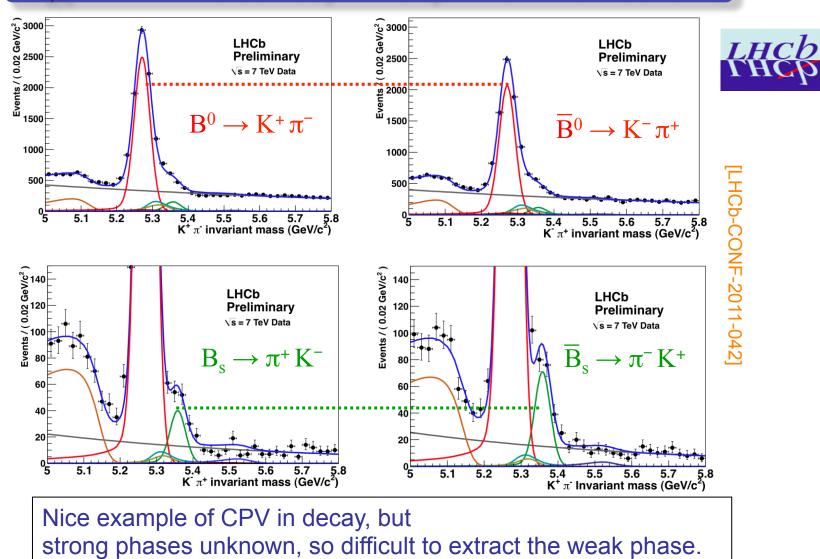
Strong phase difference (δ not zero) $\rightarrow |A_f| \neq |\bar{A}_{\bar{f}}|$


CP violation in decay due to interference between strong and weak phase difference. CP violation in decay does not require mixing: can also occur in charged hadrons decays

Problem: strong phases unknown, so difficult to extract the weak phase.

Example: CP violation in decay

Charmless charged two-body *B* decays



Direct CP violation possible due to treepenguin interference in $B_{d,s} \rightarrow K \pi$ decays.

Example: CP violation in decay

$B_{d,s} \rightarrow K^+ \pi^-$: Clear asymmetry in raw distributions

Jeroen van Tilburg

Another Example: CP violation in decay

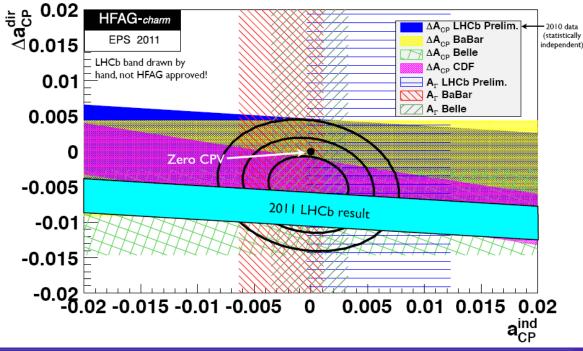
ΔA_{CP} in $D^0 \rightarrow h^+h^-$ (CPV in decay)

$$\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-) = \Delta a_{CP}^{\text{dir}} - 0.1 a_{CP}^{\text{ind}}$$

Theory predictions: ~0.1%

LHCb measurement (2011 only; 0.6 fb⁻¹):

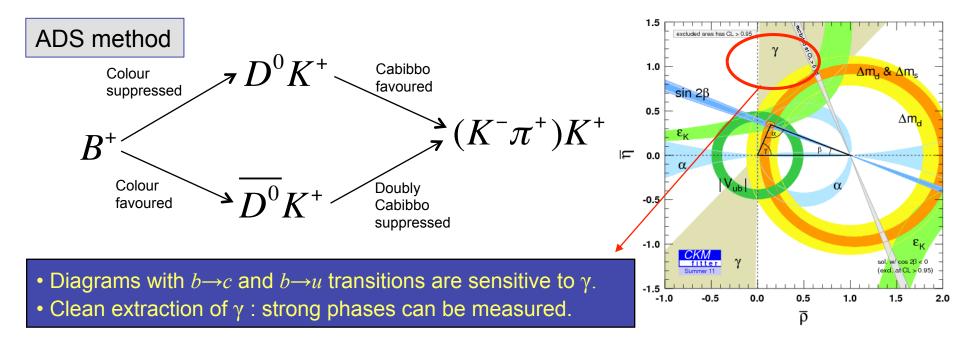
$$\Delta A_{CP} = [-0.82 \pm 0.21 (\text{stat.}) \pm 0.11 (\text{sys.})] \%$$


Signifance 3.5σ

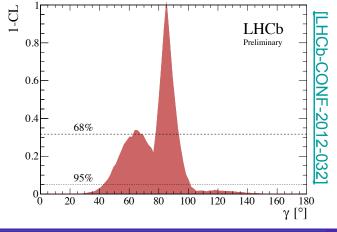
[LHCb-PAPER-2011-023]

First evidence of CP violation in charm sector!

<u>News flash</u>: Updates with more data push result much closer to zero.


result much closer to zero.

Another example: measurement of y


Direct CP violation in interference between two subsequent weak decays.

First measurement of CKM angle γ from LHCb (including ADS, GLW, GGSZ methods)

$$\gamma = (71.1^{\,+16.6}_{\,-15.7})^{\circ}$$

Is becoming competitive with B factories.

Now you have seen two examples of CP violation:

- 1. CPV in mixing (interference between M_{12} and Γ_{12})
- 2. CPV in decay (interference between strong and weak phases)

And both are due to interference.

Now the obvious third type of CP violation (and most beautiful) is:

3. CPV in the interference between mixing and decay

We have seen already the time-dependence of flavour of a initially pure B^0 or B^0 :

$$|B^{0}_{\rm phys}(t)\rangle = g_{+}(t)|B^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{B}^{0}\rangle$$
$$|\overline{B}^{0}_{\rm phys}(t)\rangle = g_{+}(t)|\overline{B}^{0}\rangle + \frac{p}{q}g_{-}(t)|B^{0}\rangle$$

with

$$g_{\pm}(t) = \frac{1}{2} \left(e^{-(im_L + \Gamma_L/2)t} \pm e^{-(im_H + \Gamma_H/2)t} \right)$$

But what we are actually interested in is the decay rate of a B into a final state f

$$\Gamma_{B\to f}(t) = |\langle f|T|B^0_{\text{phys}}(t)\rangle|^2$$

So, we define the decay amplitudes as:

$$A_f = \langle f | T | B^0 \rangle \quad , \quad \bar{A}_f = \langle f | T | \bar{B}^0 \rangle$$
$$A_{\bar{f}} = \langle \bar{f} | T | B^0 \rangle \quad , \quad \bar{A}_{\bar{f}} = \langle \bar{f} | T | \bar{B}^0 \rangle$$

Now let's just write down the full time-dependent decay rate:

$$\Gamma_{B \to f}(t) = |A_f|^2 (1 + |\lambda_f|^2) \frac{e^{-\Gamma t}}{2} \cdot \left(\cosh \frac{\Delta \Gamma t}{2} + D_f \sinh \frac{\Delta \Gamma t}{2} + C_f \cos \Delta m t - S_f \sin \Delta m t \right)$$

$$\Gamma_{\overline{B} \to f}(t) = |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) \frac{e^{-\Gamma t}}{2} \cdot Compared to plain mixing: Two new interference terms \left(\cosh \frac{\Delta \Gamma t}{2} + D_f \sinh \frac{\Delta \Gamma t}{2} - C_f \cos \Delta m t + S_f \sin \Delta m t \right)$$

where:

$$D_f = \frac{2\text{Re}\lambda_f}{1+|\lambda_f|^2} \quad , \quad C_f = \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2} \quad , \quad S_f = \frac{2\text{Im}\lambda_f}{1+|\lambda_f|^2}$$

and:

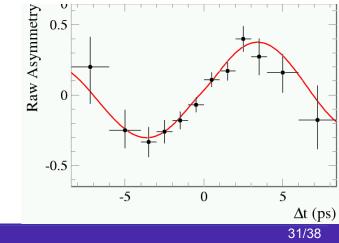
$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} \quad , \quad \lambda_{\bar{f}} = \frac{q}{p} \frac{\bar{A}_{\bar{f}}}{A_{\bar{f}}}$$

This beast simplifies a lot when assuming no CPV in decay, no CPV in mixing and f is CP eigenstate: |q/p| = 1

$$|q/p| = 1$$
$$|A_f/\bar{A}_f| = 1$$

Then defining the CP asymmetry as:

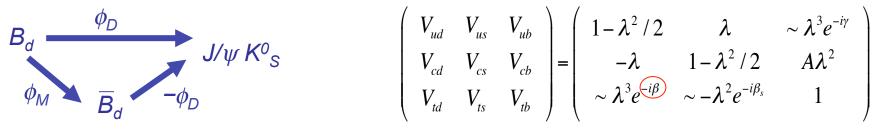
$$\mathcal{A}_{CP}(t) = \frac{\Gamma_{\overline{B} \to f}(t) - \Gamma_{B \to f}(t)}{\Gamma_{\overline{B} \to f}(t) + \Gamma_{B \to f}(t)} = \underbrace{\mathrm{Im}\lambda_f \mathrm{sin}\,\Delta mt}_{\text{If amplitude non-zero:}}$$

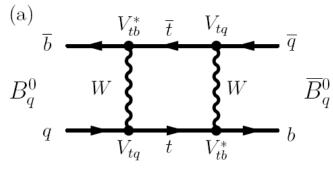

The asymmetry is oscillating with Δm and amplitude Im(λ). Experimentally, you simply need to measure this amplitude to access directly the phases of the CKM matrix (time-dependent + flavour tagging)

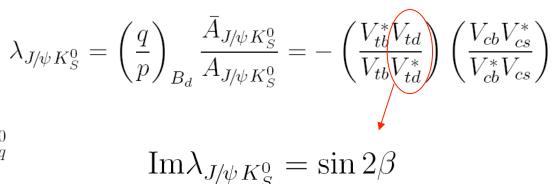
For example, for the "golden" decay $B^0 \rightarrow J/\psi K_S^0$ this amplitude equals:

$$\mathrm{Im}\lambda_{J\!/\!\psi\,K^0_S} = \sin 2\beta$$

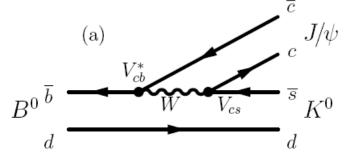
CKM phase β directly observable!

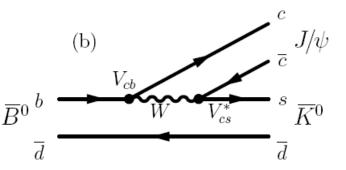


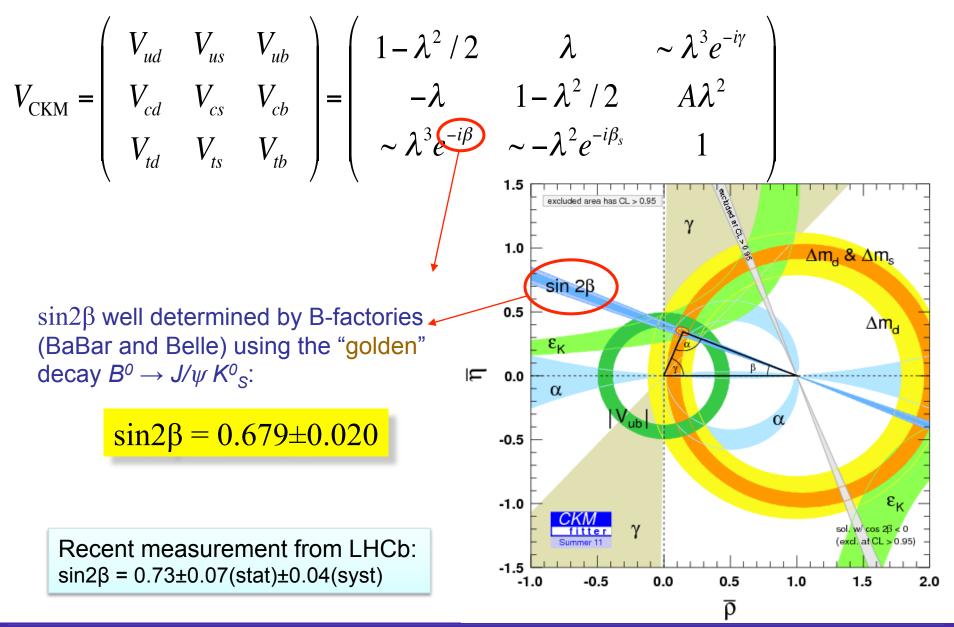

Example: Measurement of sin2β



The "golden" decay $B^0 \rightarrow J/\psi K^0_S$ (final state is CP eigenstate)






Decay diagrams:

Example: Measurement of $sin 2\beta$

Example: Measurement of $sin 2\beta_s$

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & \sim \lambda^3 e^{-i\gamma} \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ \sim \lambda^3 e^{-i\beta} & \sim -\lambda^2 e^{-i\beta} & 1 \end{pmatrix}$$

• Measure CP asymmetry in $B_c \rightarrow J/\psi \phi$

- B_s counterpart of $B_d \rightarrow J/\psi K^0$.
- Can simultaneously extract $\Delta \Gamma_s$

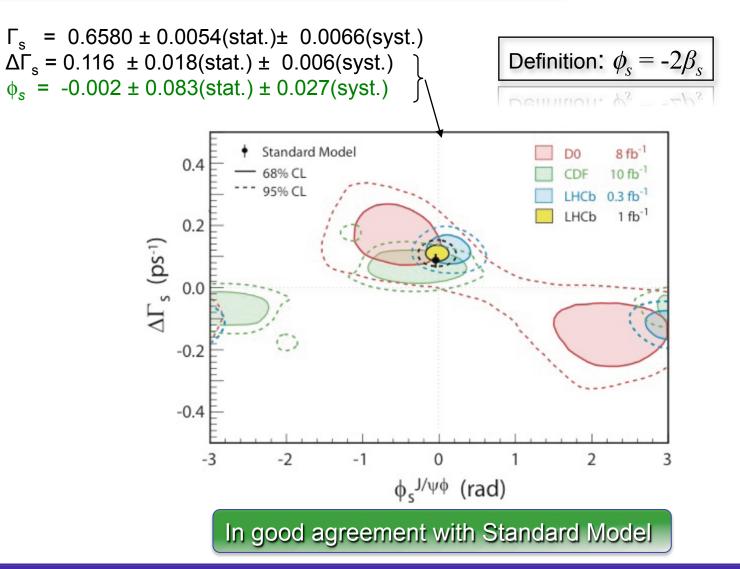
• Small SM prediction: $2\beta_s = 0.036 \pm 0.002$

$$\overline{B}_{s}^{0} \left\{ \begin{array}{c} b \\ \overline{s} \end{array} \right\} \begin{array}{c} c \\ \overline{c} \end{array} \right\} J/\psi$$

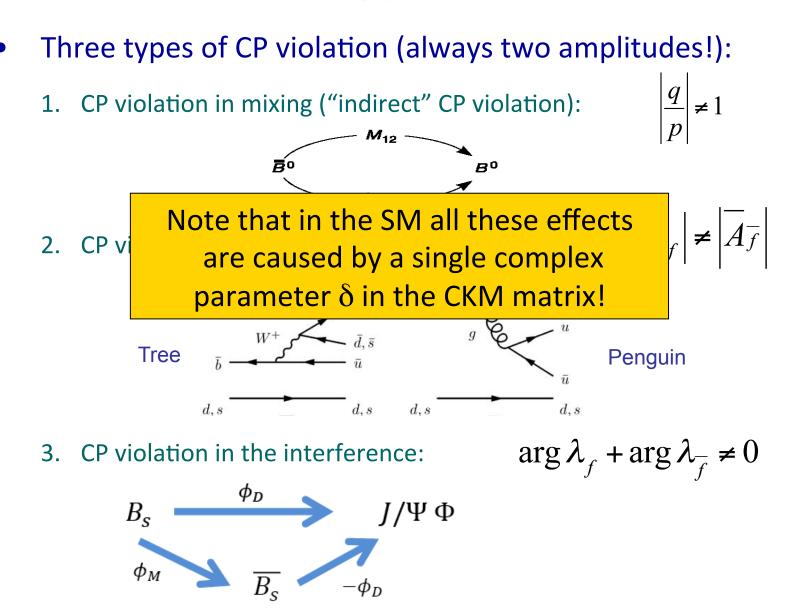
$$s \\ \overline{s} \end{array} \left\{ \begin{array}{c} \phi(1020) \rightarrow K^{+}K^{-} \end{array} \right\}$$

$$f_{0}(980) \rightarrow \pi^{+}\pi^{-} \rightarrow \infty$$

Narrow \u03c6 resonance (clean)
Vector-vector final state (requires angular analysis)

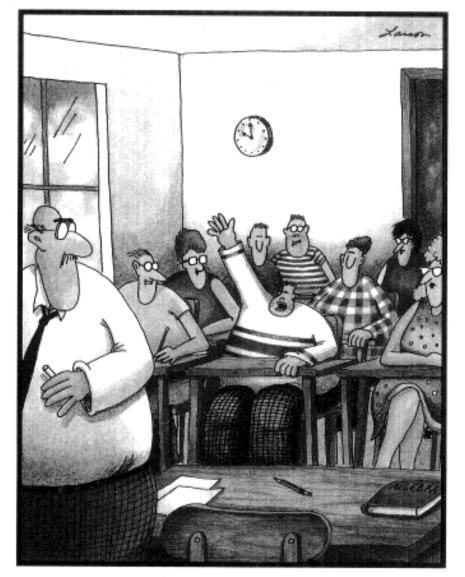

☺ CP odd final state (no angular analysis)
 ⊗ BR about 20% of B_s→ J/ψ φ

Example: Measurement of $sin 2\beta_s$


Using 1.0 fb⁻¹ [LHCb-CONF-2012-002] [Phys. Lett. B 713 (2012) 378-386]

Jeroen van Tilburg

Overview: Types of CP violation



CPT violation?

• Question 1: Answer 1 + 2: $A K_L \neq an anti-K_S particle!$ The mass difference between K_L and K_S : $\Delta m = 3.5 \times 10^{-6} \text{ eV} => \text{CPT violation}?$ • Question 2: How come the lifetime of $K_S = 0.089$ ns while the lifetime of the $K_L = 51.7$ ns? • Question 3: BaBar measures decay rate $\mathbf{B} \rightarrow \mathbf{J}/\psi \ \mathbf{K}_S$ and $\mathbf{B} \rightarrow \mathbf{J}/\psi \ \mathbf{K}_S$. Clearly not the same: how can it be? <u>Answer 3:</u> Partial decay rate \neq total decay rate! However, the sum over all partial rates (>200 or so) is the same for \mathbf{B} and \mathbf{B} . (Amazing! – at least to me)

"Mr. Osborne, may I be excused? My brain is full."

Jeroen van Tilburg