

Detectors for particle tracking and identification

Silvia Masciocchi GSI Darmstadt and University of Heidelberg

39th Heidelberg Physics Graduate Days, HGSFP Heidelberg October 9, 2017

An essential tool to look at the small and the "invisible"

Particles produced in a collision at the LHC

From fundamental research:

 Particle collisions at accelerators

An essential tool to look at the small and the "invisible"

From fundamental research:

- Particle collisions at accelerators
- Telescopes for gamma-ray astrophysics

High Energy Stereoscopic System HESS telescope in Namibia

3

An essential tool to look at the small and the "invisible"

From fundamental research:

- Particle collisions at accelerators
- Telescopes for gamma-ray astrophysics

To applications:

 Security: dirty bombs detection

Thermal neutron sensor to detect bomb remnants and explosives

An essential tool to look at the small and the "invisible"

From fundamental research:

- Particle collisions at accelerators
- Telescopes for gamma-ray astrophysics

To applications:

- Security: dirty bombs detection
- Medical imaging: Positron-Electron Tomography (PET)

S.Masciocchi@gsi.de

Interaction of particles with matter, October 9, 2017

Research in physics

Nuclear and particle physics

Progress has been:

- mostly driven by experimental observations
- critically coupled with the development of new methods in particle acceleration and particle detection

first $\Omega^{\text{-}}$ event seen in the 80" bubble chamber at the BNL Alternating Gradient Synchrotron

S.Masciocchi@gsi.de

Interaction of particles with matter, October 9, 2017

Nuclear and particle physics

- Accidental observation brings to a physics discovery Example: radioactivity
- Some instruments have been developed as tools to support the work of the physicist Example: Geiger counter
- Large scale experiments at accelerators were built to prove expectations from a theory

Discovery of radioactivity

1896: first detection of natural radioactivity (α and β decays) Henri Becquerel (mineralogist), Marie and Pierre Curie, Paris

Becquerel's (wrong) assumption: minerals made phosphorescent by visible light might emit x-rays. Wrap a photographic plate in black paper, place a phosphorescent uranium mineral on top of it and expose to sun. Accidental discovery in February 1896 (bad weather)

Discovery of radioactivity

Becquerel: photographic plate which was exposed to radiation from a uranium salt. Radiation resulted to be **charged**.

Soon after Marie and Pierre Curie identified other radioactive materials: Polonium, Radium, Thorium **Nobel prize physics 1903**

Rutherford scattering

1911: Rutherford (University of Manchester) with Geiger (visiting) and Marsden (undergraduate student) discover the atomic nucleus

Rutherford scattering

1911: Rutherford (University of Manchester) with Geiger (visiting) and Marsden (undergraduate student) discover the atomic nucleus

TASSO experiment at DESY (1979)

- Theory of the strong interaction
- PETRA collider: e⁺e⁻ at √s = 27.4 GeV
- TASSO experiment: large drift chamber

Planar 3-jet event

TASSO experiment at DESY (1979)

- Theory of the strong interaction
- PETRA collider: e⁺e⁻ at √s = 27.4 GeV
- TASSO experiment: large drift chamber

TASSO - MATERIA - MATERIA

Planar 3-jet event

Discovery of the gluon

Interaction of particles with matter, October 9, 2017

1. Interaction of particles with matter

2. Gaseous detectors

for very large acceptance, 3D tracking, particle identification

3. Semiconductor detectors

for high precision position measurements

- 4. Calorimetry for energy measurements More particle identification techniques
- 5. How a full experiment is put together

Absolute basic principles:

- Particle must INTERACT with the material of the detector
- It has to transfer energy / momentum in some way
- Knowing the interaction of the particle with the detector material in detail allows us to deduce extended, precise and quantitative information about the particle properties

Particle detection happens via the energy the particle deposits in the material it traverses

16

Interactions with matter

Mechanisms through which radiation interacts with the material it traverses, in a detector:

• Charged particles:

- Ionization
- Excitation
- Bremsstrahlung
- Cherenkov radiation
- Transition radiation
- Photons:
 - Photo effect
 - Compton effect
 - Pair production
- Neutrinos: weak interaction

Distinguish between energy loss via multiple interactions and total energy loss in a single interaction (e.g. pair production)

Hadrons: nuclear interactions

Interactions with matter - examples

Outline for today:

- Energy loss by ionization (by "heavy" particles)
- Interaction of electrons with matter:
 - Energy loss by ionization
 - Bremsstrahlung
- Cherenkov effect
- Transition radiation
- Interaction of photons
 - Photoelectric effect
 - Compton scattering
 - Pair production

Charged particles

Interaction of charged particles

Charged particle X, with $Mc^2 \gg m_e c^2$ (electrons are discussed later) Dominant: Coulomb interaction between the particle X and the atom \rightarrow 2 electromagnetic processes:

1) elastic scattering from nucleiatom + X
$$\rightarrow$$
 atom* + X \downarrow atom + γ \downarrow atom + γ

2) inelastic collisions with the atomic electrons of the material atom + X \rightarrow atom⁺ + e⁻ + X ionization

Energy loss by ionization dE/dx

- Charged particle: ze
- "heavy" particle: $Mc^2 \gg m_e^2 c^2$ (electrons are discussed later)
- Energy high enough to "resolve" the inside of the atom: from the uncertainty principle

$$\lambda = \hbar / p$$
 e.g. 1 GeV/c \rightarrow 1 fm

Collisions with electrons:

- Classical derivation by N. Bohr (1913)
- Quantum mechanical derivation by
 H. Bethe (1930) and F. Bloch (1933)

Bethe-Bloch equation

Considering quantum mechanical effects:

$$-\left\langle \frac{dE}{dx} \right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right] \left[\cdot \rho \right]$$

$$K = 4\pi N_A r_e^2 m_e c^2 = 0.307 \text{ MeV } g^{-1} \text{ cm}^2$$

 $T_{max} = 2m_e c^2 \beta^2 \gamma^2 / (1 + 2\gamma m_e / M + (m_e / M)^2)$ [Max. energy transfer in single collision]

- z : Charge of incident particle
- M : Mass of incident particle
- Z : Charge number of medium
- A : Atomic mass of medium
- I : Mean excitation energy of medium
- δ : Density correction [transv. extension of electric field]

 $N_A = 6.022 \cdot 10^{23}$ [Avogardo's number]

 $r_e = e^2/4\pi\epsilon_0 m_e c^2 = 2.8 \text{ fm}$ [Classical electron radius]

me = 511 keV [Electron mass]

 $\beta = v/C$ [Velocity]

```
\gamma = (1 - \beta^2)^{-2}
[Lorentz factor]
```

Validity:

```
\begin{array}{l} .05 < \beta \gamma < 500 \\ M > m_{\mu} \end{array}
```

density

Bethe-Bloch equation

Considering quantum mechanical effects:

$$-\left\langle \frac{dE}{dx} \right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$
[· ρ]

I = ħ <v> = effective ionization potential
 Or mean excitation energy of the medium
 <v> = average revolution frequency of electron

 $T_{max} \approx 2 m_e c^2 \beta^2 \gamma^2$ maximum energy transfer in a single collision, for M $\gg m_e$

dE/dx of pions in copper

Small βγ

- quick fall of dE/dx as β^{-2} (Bohr)
- Precisely it is β^{-5/3}: slower particles experience the electric field for a longer time → stronger energy loss!
- Shell corrections: particle velocity can get close to the electron orbital velocity (βc~v_e):
 - Assumption of electron to be at rest is no longer valid
 - Capture processes become possible

Large _{βγ}

 Relativistic rise ~ In β²γ² The transverse electric field increases due to Lorentz transformation → increase of contribution from larger b

50.0 $dE/dx \propto \beta^{-5/3}$ π^{\pm} on Cu = 322 eV $dE/dx \propto \beta^{-2}$ 20.0 *dE/ dx* (MeV g⁻¹cm²) Radiative effectss 10.0 become important Approx T_{max} 5.0 dE/dx without δ $-100 \times$ Mininumm shell -> ionization correct. 2.0 $T_{\rm cut} = 0.5 \, {\rm MeV}$ 1.0 Complete dE/dx∝β⁻ 0.5 0.1 1.0 10 100 1000 10000 $\beta \gamma = p/Mc$

left: for small γ ,

right: for large γ

Density correction must be considered: Fermi plateau →

Large βγ: density correction _

- Real media are polarized → effective shielding of electric field far from particle path → effectively reduces the long range contribution to relativistic rise
- effectively dE/dx grows like $ln(\beta\gamma)$

 Correction much larger for liquids and solids! Logarithmic rise ~20% in liquids and solids, ~50% in gases

δ

dE/dx

Particle Data Group: pdg.lbl.gov/2016/reviews/rp p2016-rev-passageparticles-matter.pdf

Different detector materials $\frac{dE}{dx} \approx \frac{Z}{A}$ (remember density!)

dE/dx depends on βγ = p/(Mc) → at a given p, dE/dx is different for particles with different mass M

dE/dx used in practice the ALICE Time Projection Chamber

Range of particles

Integrate over (changing!!) energy loss from initial energy E to 0, to calculate the range:

$$R = \int_{E}^{0} \frac{\mathrm{d}E}{\mathrm{d}E/\mathrm{d}x}$$

Here: Range of heavy charged particles in liquid (bubble chamber) hydrogen, helium gas, carbon, iron, and lead. For example:

 For a K⁺ whose momentum is 700 MeV/c, βγ = 1.42. For lead we read R/M ≈ 396, and so the range is 195 g cm⁻² (17 cm).

Particles stopped in medium

Energy loss curve vs depth showing Bragg peak

S.Masciocchi@gsi.de

Possibility to deposit a rather precise dose at a well defined depth (body), by variation of the beam energy

Initially with protons, later also with heavier ions such as ¹²C.

Precise 3D irradiation profile, also with suitably shaped absorbers (custom made for patient).

High precision beam scanning.

Tumor treatment at HIT (Heidelberg Ion-Beam Therapy center) in collaboration between DKFZ and GSI

Heidelberg Ion-beam Therapy Center (HIT)

Delta electrons

Electrons liberated by ionization can have large energies. Above a certain threshold (e.g. T_{cut}) they are called δ electrons.

Early observation in emulsions.

Massive highly relativistic particle can transfer practically all its energy to a single electron!

Delta electrons

Picture from CERN 2-meter hydrogen bubble chamber exposed to a beam of negative kaons K⁻, with energy 4.2 GeV. This piece corresponds to about 70 cm in the bubble chamber.

The 12 parallel lines are trails of bubbles – initiated by the ionization of hydrogen by the beam particles, which enter at the bottom of the picture.

Delta electrons

Cloud chamber

Limitation to the measurement of the incoming particle: most often the δ electron is NOT detected as part of the ionization trail

- \rightarrow broadening of track
- \rightarrow broadening of energy loss distribution

dE/dx fluctuations

The Bethe-Bloch formula describes the MEAN energy loss
 The energy loss is measured in a detector of finite thickness Δx with

Distribution of energy loss in single collisions: Gauss plus tail towards high losses due to the δ electrons

Landau for thin absorbers, approximation for thicker ones: (Vavilov 1957)

Multiple (Coulomb) scattering

Incident particle can also scatter in the Coulomb field of the NUCLEUS ! Deflection of trajectory will be more significant because of the factor Z !

after k collisions

$$\langle \theta_k^2 \rangle = \sum_{m=1}^k \theta_m^2 = k \langle \theta^2 \rangle$$

- Single collision (thin absorber): Rutherford scattering $d\sigma/d\Omega \propto \sin^{-4}\theta/2$
- Few collisions: difficult problem
- Many (>20) collisions: statistical treatment "Molière theory"

Multiple (Coulomb) scattering: Molière theory

Obtain the mean deflection angle in a plane by averaging over many collisions and integrating over b:

$$\sqrt{\langle \theta^2(x) \rangle} = \theta_{\text{rms}}^{\text{plane}} = \frac{13.6 \text{ MeV}}{\beta pc} z \sqrt{\frac{x}{X_0}} (1 + 0.038 \ln \frac{x}{X_0})$$

• Material constant X₀: radiation length
• $\propto \sqrt{x} \rightarrow \text{ use thin detectors}$
• $\propto 1/\sqrt{X_0} \rightarrow \text{ use light detectors}$
• $\propto 1/\beta p \rightarrow \text{ serious problem at low momenta}$

In 3 dimensions: $\theta_{\rm rms}^{\rm space} = \sqrt{2} \, \theta_{\rm rms}^{\rm plane} \qquad 13.6 \rightarrow 19.2$

Multiple scattering limits the momentum and tracking resolution, particularly at low momenta!

S.Masciocchi@gsi.de

Ionization yield

Mean number of electron-ion pairs produced along the track of the ionizing particle:

- Total ionization = primary ionization + secondary ionization due to energetic primary electrons $n_t = n_p + n_s$
- Consider also the energy loss by excitation (smaller)
- \rightarrow mean energy W to produce an electron-ion pair: $n_t = \frac{\Delta E}{W}$

W > ionization potential I_0 since:

- Also ionization of inner shells
- Excitation that may not lead to ionization
 n_t ≈ 2-6 n_p

Ionization yield

	typical values			
	I_0 (eV)	W (eV)	$n_p (cm^{-1})$	$n_t \; (cm^{-1})$
H ₂	15.4	37	5.2	9.2
N_2	15.5	35	10	56
02	12.2	31	22	73
Ne	21.6	36	12	39
Ar	15.8	26	29	94
Kr	14.0	24	22	192
Xe	12.1	22	44	307
CO_2	13.7	33	34	91
CH_4	13.1	28	16	53
		in gases	diff. due to	diff. due to
		pprox 30 eV	ρ and Z	electronic struct.

In comparison, in semiconductors: W = 3.6 eV in Si, 2.85 eV in Ge Additional factor 103 due to density \rightarrow many more electron-ion pairs!!

Summary of energy loss by ionization

- Charged particles, em interaction
- Bethe-Bloch parametrization:

• Delta electrons

Landau distribution of deposited energy

Multiple scattering

 $\frac{dE}{dx}$

VS

Streamer chamber image

Interaction of particles with matter, October 9, 2017

GSľ

Interaction of electrons with matter

Energy loss by ionization

Bethe-Bloch equation must be modified to account for:

- Small mass of electron \rightarrow deflections become more important
- Incident and target electron have the same mass $m_e (T_{max} = T/2)$
- Quantum mechanics: after the scattering, the incoming electron and the one from ionization are indistinguishable

$$-\left\langle \frac{dE}{dx} \right\rangle_{\rm el.} = K \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \frac{m_e \beta^2 c^2 \gamma^2 T}{2I^2} + F(\gamma) \right]$$

Energy loss for electrons and positrons is DIFFERENT:

- positron is not indistinguishable from electron in atom
- Low energy positrons have larger energy loss because of annihilation
- At same β , the difference is within 10%

Bremsstrahlung

Acceleration of charged particles in the Coulomb field of the nucleus:

Bremsstrahlung: radiation length

$$-\frac{dE}{dx} = \frac{E}{X_0} \longrightarrow E(x) = E_0 \exp(-\frac{x}{X_0})$$

 X_0 : distance after which the energy of the electron is reduced to E_0/e

For materials which are mixtures of more components:

$$\frac{1}{X_0} = \sum_i \frac{w_i}{X_{0i}}$$
 with weight fraction of substance i

Overview: energy loss by electrons

Critical energy

Example: Cu $E_c \approx 610/30 \text{ MeV} \approx 20 \text{ MeV}$

Multiple scattering

Difference between heavy particles and electrons:

- Heavy particle: the track is more or less straight
- Electron: can be scattered to large angles!

Transverse deflection of an electron of energy $E=E_c$, after traversing a distance X_0 (= one radiation length):

Molière radius:

Bethe-Bloch curve for muons

Outline for today:

- Energy loss by ionization (by "heavy" particles)
- Interaction of electrons with matter:
 - Energy loss by ionization
 - Bremsstrahlung
- Cherenkov effect
- Transition radiation
- Interaction of photons
 - Photoelectric effect
 - Compton scattering
 - Pair production

Charged particles

Cherenkov effect

A charged particle with mass M and velocity $\beta = v/c$ travels in a medium with refractive index n:

$$n^2 = \epsilon_1 = (c/c_m)^2$$

 ϵ_1 = real part of the medium dielectric constant c_m = speed of light in medium = c/n

If
$$v > c_m$$
, namely $\beta > \beta_{thr} = 1/n \rightarrow$
real photons are emitted:

- Photons are "soft"
 |p| ≈ |p'|
 - $\omega \ll \gamma M c^2$
- Characteristic emission angle

$$\cos \theta_{\rm c} = \frac{\omega}{{\rm k} \cdot {\rm v}} = \frac{1}{{\rm n}\,\beta}$$

Cherenkov 1934

Cherenkov: first application

Threshold detector: use different materials (refractive indices) such that particles of different masses, at equal momentum p, produce Cherenkov radiation of not (pass the threshold or not):

Choose n_1 , n_2 such that for a given p ($\beta = p/E$):

$$\beta_{\pi} > \frac{1}{n_1} \qquad \beta_{\kappa}, \beta_{p} < \frac{1}{n_1}$$
$$\beta_{\pi}, \beta_{\kappa} > \frac{1}{n_2} \qquad \beta_{p} < \frac{1}{n_2}$$

Particle identification: light in C_1 and $C_2 \rightarrow pion$ light in C_1 and not in $C_2 \rightarrow kaon$ no light in both C_1 and $C_2 \rightarrow proton$

Cherenkov radiation: spectrum

Consider the spectrum of emitted photons per unit length versus wavelength: short wavelengths dominate (blue)

$$\frac{d^2N}{d\lambda dx} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right) = \frac{2\pi\alpha z^2}{\lambda^2} \sin^2\theta_C$$

 \rightarrow consider the typical sensitivity range of a good/typical photomultiplier (300-600 nm):

Energy loss: the energy loss by Cherenkov radiation is negligible wrt the one by ionization!

typical photon energy:
$$\simeq 3 \text{ eV}$$
in water $\frac{dE}{dx}\Big|_{cher} = 0.5 \text{ keV/cm} = 0.5 \text{ keV/g/cm}^2$ cf. ionization $\frac{dE}{dx}\Big|_{ion} \ge 2 \text{ MeV/g/cm}^2$

Cherenkov effect: momentum dependence

Asymptotic behavior of the Cherenkov angle and the number of produced photons, as a function of the particle momentum p (for $\beta \rightarrow 1$):

S.Masciocchi@gsi.de

Application: measurement of β

In a medium of known refractive index n, measure the Cherenkov angle and therefore determine the particle $\beta = p/E$ (\rightarrow identity)

RICH detectors

Principle: image the Cherenkov cone into a ring, of which measure the radius. Particle momentum provided by other detectors Components: radiator (+ mirror) + photon detector

The LHCb RICH-1 detector

Two radiators: aerogel + C_4F_{10} Spherical + flat mirrors Hybrid Photon Detectors

S.Masciocchi@gsi.de

Spherical mirror array: LHCb

S.Masciocchi@gsi.de

Transition radiation

A particle at high energy (= large γ) crossing the boundary between two different dielectrics, having different indices of refraction, can produce "transition radiation" \rightarrow can emit real photons

- Predicted by Ginzburg and Frank (1946)
- Observed (optically) by Goldsmith and Jelley (1959)
- Experimental confirmation with X-ray measurement (1970s)

Explanation: re-arrangement of electric field

Transition radiation: full calculation

Full quantum mechanical calculation:

- Interference: coherent superposition of radiation from neighboring points in vicinity of the track
 - \rightarrow angular distribution strongly peaked forward
- Depth from boundary up to which contributions add coherently → formation length D

Typical values: polyethylene $CH_2 \quad \omega_p = 20 \text{ eV}, \ \rho = 1 \text{ g/cm}^3 \rightarrow \mathbb{D} \approx 10 \ \mu\text{m}$ For d > D \rightarrow absorption effects important! Consider foils of thickness D!

Per boundary: ~ α photons \rightarrow many boundaries !! O(100 foils) \rightarrow <n_v> ~ 1-2 $\theta \simeq \frac{1}{\gamma}$

 $\mathsf{D} \simeq \frac{\gamma \cdot \mathsf{C}}{\omega_{\mathsf{p}}}$

Transition radiation spectrum

X-ray photon energy spectra for a radiator consisting of 200 25 µm thick foils of Mylar and for a single surface

Principle of a transition radiation detector

S.Masciocchi@gsi.de

ALICE TRD

Demonstration of the onset of TR at $\beta \gamma \approx 500$ (X. Lu, Hd)

S.Masciocchi@gsi.de

Interaction of photons with matter

Characteristic of photons: can be removed from incoming beam of intensity "I", with one single interaction:

 $dI = -I \mu dx$ μ (E, Z, ρ): absorption coefficient

Lambert-Beer law of attenuation: $I(x) = I_0 \exp(-\mu x)$

- Mean free path of photon in matter:
- To become independent from state (liquid, gaseous): mass absorption coefficient: 7

Example: $E_v = 100 \text{ keV}$, Z=26 (iron), $\lambda = 3 \text{ g/cm}^2$ or 0.4 cm

Т I-dI

$$\Lambda = \frac{1}{n\sigma} = \frac{1}{\mu}$$

$$r = \frac{\mu}{\rho} = N_A \frac{\sigma}{A}$$

Interaction processes

The most important processes of interaction of photons with matter, in order of growing importance with increasing photon energy E, are:

- Photoelectric effect
- Compton scattering: incoherent scattering off an electron
- Pair production: interaction in nuclear field

Other processes, not as important for energy loss:

- Rayleigh scattering: coherent $\gamma + A \rightarrow \gamma + A$: atom neither ionized nor excited
- Thomson scattering: elastic scattering $\gamma + e \rightarrow \gamma + e$
- Photo nuclear absorption: γ + nucleus \rightarrow (p or n) + nucleus
- Hadron pair production: $\gamma + A \rightarrow h^+ + h^- + A$

Absorption length

Particle Data Group, 2016

S.Masciocchi@gsi.de

Photoelectric effect

$$\gamma$$
 + atom \rightarrow atom⁺ + e⁻

$$E_e = hv - I_b$$

Where: $hv = E\gamma = photon energy$,

 I_{b} = binding energy of the electron (K, L, M absorption edges)

Binding energy depends strongly on $Z \rightarrow$ the cross section will depend strongly on Z: $I = \frac{7}{2}$

The de-excitation of the excited atom can happen via two main processes:

 Auger electrons: atom^{** +} → atom^{* +} + e⁻
 Auger electrons deposit their energy locally due to their very small energy (<10 keV)

Interaction of particles with matter, October 9, 2017

Fluorescence photons (X-rays) must interact via the photoelectric effect \rightarrow much longer range

The relative fluorescence yield increases with Z

 $w_{\kappa} = P(fluor.) / [P(fluor.) + P(Auger)]$

Auger electron emission

Photon total cross section

Compton scattering

Incoherent scattering of photon off an electron: $\gamma + e^- \rightarrow (\gamma)' + (e^-)'$

Energy of the outgoing photon:

$$E_{\gamma}' = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} (1 - \cos \theta)}$$

Kinetic energy of the outgoing electron:

$$T_e = \frac{\frac{E_{\gamma}^2}{m_e c^2} (1 - \cos \theta)}{1 + \frac{E_{\gamma}}{m_e c^2} (1 - \cos \theta)}$$

Max energy transfer in back scattering:

$$\left(\frac{T_e}{E_{\gamma}}\right)_{\max} = \frac{E_{\gamma}}{m_e c^2} \frac{2}{1 + \frac{2E_{\gamma}}{m_e c^2}}$$
$$\Delta E = E_{\gamma} - T_{e,\max} = \frac{E_{\gamma}}{1 + \frac{2E_{\gamma}}{m_e c^2}} \to \frac{m_e c^2}{2}$$

Compton edge

If the scattered photon is not absorbed in the detector material, there will be a small amount of energy "missing" from the Full Energy Peak (FEP) \rightarrow Compton edge

FEP: photoelectric effect and Compton effect when the scattered photon is absorbed in the detector. Intensity depends on detector volume, width depends on detector resolution.

Photon total cross section

Pair production: Bethe-Heitler process

Interaction in the Coulomb field of the atomic nucleus (not possible in free space)

Angular distribution: the produced electrons are in a narrow forward cone, with opening angle of $\theta = m_e / E_v$

e

Pair production: Bethe-Heitler process

Cross section: raises above threshold, but eventually saturates at large E_v because of screening effects of the nuclear charge (Z = 82)Lead $E_v \gg m_e c^2$ $1 \, \text{Mb}$ Cross section (barns/atom) $\sigma_{\text{Pair}} = 4 Z^2 \alpha r_e^2 (\frac{7}{9} \ln \frac{183}{7^{1/3}} - \frac{1}{54})$ $\sigma_{Rayleigh}$ 1 Me Pair 1 kb production κ_{nuc} $\approx 4 Z^2 \alpha r_e^2 (\frac{7}{9} \ln \frac{183}{7^{1/3}})$ σ_{g.d.r.} 1 b σ_{Compton} 10 mb 10 eV 1 keV 1 MeV 1 GeV 100 GeV Photon Energy

Compton scattering

Pair production: Bethe-Heitler process

Pair production cross section

$$\sigma_{\text{Pair}} \approx \frac{7}{9} 4 \alpha r_e^2 Z^2 \ln \frac{183}{Z^{1/3}} = \frac{7}{9} \frac{A}{N_A} X_0$$

 X_0 : radiation length (in cm or g/cm²)

Absorption coefficient:

 $(\mu = n\sigma$ n=particle density)

$$\mu_{\text{Pair}} = \rho \cdot \frac{N_A}{A} \sigma_{\text{Pair}}$$
$$\approx \frac{7}{9} \frac{1}{X_0}$$

	ho (g/cm ³)	X_0 (cm)
liq H_2	0.071	865
С	2.27	18.8
Fe	7.87	1.76
Pb	11.35	0.56
air	0.0012	30 420

Total photon cross section and absorption length

$$\sigma_{tot} = \sigma_{Ph} + \sigma_c + \sigma_p$$

$$\mu = \mu_{Ph} + \mu_c + \mu_p$$

$$\mu_i = n\sigma_i = \frac{N_A \rho}{A} \sigma_i$$

Figure 33.15: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes [51]:

- $\sigma_{p.e.}$ = Atomic photoelectric effect (electron ejection, photon absorption)
- $\sigma_{\text{Rayleigh}} = \text{Rayleigh}$ (coherent) scattering-atom neither ionized nor excited
- $\sigma_{\text{Compton}} =$ Incoherent scattering (Compton scattering off an electron)
 - $\tilde{\kappa}_{nuc}$ = Pair production, nuclear field
 - $\kappa_e =$ Pair production, electron field
 - $\sigma_{g.d.r.}$ = Photonuclear interactions, most notably the Giant Dipole Resonance [52].

In these interactions, the target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell (NIST).

S.Masciocchi@gsi.de

Photon absorption length

1 MeV photon travels about 1 cm in Pb, about 5 cm in C

Contribution by pair production

Probability P that a photon interaction will result in conversion to an e⁺e⁻ pair

For increasing photon energy, pair production becomes dominant:

for Pb beyond 4 MeV for H beyond 70 MeV

• Charged particles:

- Energy loss by ionization
 - Bethe-Bloch
 - Delta electrons
 - Landau distribution
- Excitation
- Multiple scattering
- Bremsstrahlung (electrons, TeV μ)
- Cherenkov effect
- Transition radiation

• Photons:

- Photo-electric effect
- Compton scattering
- Pair production
- Hadrons: strong interaction
- Neutrinos: weak interaction

- Charged particles:
 - Energy loss by ionization
 - Bethe-Bloch
 - Delta electrons
 - Landau distribution
 - Excitation
 - Multiple scattering
 - **Bremsstrahlung** (electrons, TeV μ)
 - Cherenkov effect
 - Transition radiation
- Photons:
 - Photo-electric effect
 - Compton scattering
 - Pair production
- Hadrons: strong interaction
- Neutrinos: weak interaction

 $dE/dx \propto \beta^{-5/3}$

1.0

20.0

10.0

5.0 −100× shell→

0.5

01

MeV

 $dE/dx \propto \beta^{-2}$

 π^{\pm} on Cu

I = 322 eV

Approx T_{max}

1000

10000

Radiative effectss

Complete dE/dx

 $\beta \gamma = \rho / M c$

10

100

 σ_{F}

- Charged particles:
 - Energy loss by ionization
 - Bethe-Bloch
 - Delta electrons
 - Landau distribution
 - Excitation
 - Multiple scattering
 - Bremsstrahlung (electrons, TeV)
 - Cherenkov effect
 - Transition radiation
- Photons:
 - Photo-electric effect
 - Compton scattering
 - Pair production
- Hadrons: strong interaction
- Neutrinos: weak interaction

 \tilde{e}^+

- Charged particles:
 - Energy loss by ionization
 - Bethe-Bloch
 - Delta electrons
 - Landau distribution
 - Excitation
 - Multiple scattering
 - Bremsstrahlung (electrons, TeV μ)
 - Cherenkov effect
 - Transition radiation
- Photons:
 - Photo-electric effect
 - Compton scattering
 - Pair production
- Hadrons: strong interaction
- Neutrinos: weak interaction

We review the most important type of particle detectors in use in particle and nuclear physics:

- Gas detectors
- Semiconductor detectors
- Calorimeters

Tomorrow

We review the most important type of particle detectors in use in particle and nuclear physics:

S.Masciocchi@gsi.de