Einführung in Datenanalyse und maschinelles Lernen in der Physik
Lösungsvorschläge
- 01_intro_ex_1a_sol.ipynb
- 01_intro_ex_1b_sol.ipynb
- 01_intro_ex_2_sol.ipynb
- 02_fit_ex_3_sol.ipynb
- 02_fit_ex_4_sol.ipynb
- 02_fit_ex_5_sol.ipynb
- 03_ml_basics_ex_1_sol_magic.ipynb
- 03_ml_basics_ex_2_sol_mnist_softmax_regression.ipynb
- 04_decision_trees_ex_1_sol_compare_tree_classifiers-2.ipynb
- 04_decision_trees_ex_2_sol_magic_xgboost_and_random_forest.ipynb
- 04_decision_trees_ex_3_sol_magic_feature_importance.ipynb
- 04_decision_trees_ex_4_sol_shap_values.ipynb
- 05_neural_networks_ex_1_sol_xor.ipynb
- 05_neural_networks_ex_2_sol_decision_boundaries.ipynb
- 05_neural_networks_ex_3_sol_boston_house_prices.ipynb
- 05_neural_networks_ex_4_sol_mnist_keras_apply.ipynb
- 05_neural_networks_ex_4_sol_mnist_keras_train.ipynb